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Recently, a photonic alloy with nontrivial topological properties has been proposed, based on the random
mixing of yttrium iron garnet (YIG) and magnetized YIG rods. When the doping concentration of magnetized
YIG rods is less than one, a chiral edge state (CES) of the topological photonic alloy appears in the frequency
range of the nontrivial topological gap of the magnetized YIG crystal. In this work, we surprisingly find that by
randomly mixing the perfect electric conductor (PEC) and magnetized YIG rods in a square lattice, the photonic
alloy system with appropriate doping concentrations can present CES in special frequency intervals even when
both components support the propagation of bulk states. Analyzing the band structure of two components, we
noticed a shift between the first trivial band gap for PEC and the first topological band gap for magnetized YIG.
When calculating the transmission spectrum of the photonic alloy, we discovered that the frequency range for
the topological gap gradually opens from the lower limit frequency of the band gap for PEC to the band gap
for the magnetized YIG rods. The topological gap opening occurs as the doping concentration of magnetized
YIG rods increases, creating an effective band-alignment effect. Moreover, the topological gap for the photonic
alloy is confirmed by calculating the reflection phase winding with the scattering method. Lastly, the gradual
appearance of the CES is identified by applying Fourier transformation to real-space electromagnetic fields. Our
work broadens the possibilities for flexible topological-gap engineering in the photonic alloy system.
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I. INTRODUCTION

Over the past few decades, research on topological
phenomena has grown exponentially. The most common ap-
proach involves the breaking or preservation of time-reversal
and spatial inversion symmetry, enabling the realization of
various topological effect [1–6], such as quantum Hall effect
[7–10], quantum spin Hall effect [11–13], quantum valley
Hall effect [14–17], etc. Photonic systems, due to their ex-
perimental feasibility, hold a crucial position in the discovery
and experimental verification of various topological states
[18–32].

In recent years, methods like topological quantum chem-
istry and symmetry indicators have facilitated rapid classifi-
cation of topological states [33–36]. This has led to extensive
studies on the topological prevalence of periodically struc-
tured crystals [37,38]. However, as research evolves, there
is an increasing focus on nonperiodic systems, such as
amorphous [39–48], Anderson insulating [49–55], quasicrys-
talline systems [56–60], etc. Researchers employ real-space
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topological invariants such as Bott index, local Chern number,
local Chern marker, and scattering methods to character-
ize the topological properties of these nonperiodic systems
[46,50,54,58,61,62].

Mixing different types of photonic crystals can form a
disordered photonic system, similar to semiconductor alloys
in photonics [63]. This system produces photonic localization,
which can be applied to random lasers [64,65]. Recently, a
novel type of disordered topological photonic system called
topological photonic alloy has been proposed by us [66]. In
a substitutional topological photonic alloy, a low-threshold
topological gap is created by doping nonmagnetized yttrium
iron garnet (YIG) rods with magnetized YIG rods. This gap
falls entirely within the band-gap frequency range of magne-
tized YIG crystals. The limitations imposed by the frequency
range could potentially hinder the widespread application of
topological photonic alloys. A natural question will arise: Is
it possible for the frequency range of the topological alloy’s
band gap to be outside the band-gap frequency range of the
two crystals that compose it?

In this paper, we answer this question in an affirmative way
by presenting the creation of a topological photonic alloy by
mixing perfect electric conductor (PEC, A component) and
magnetized YIG (B component) rods in a square lattice, as
shown in Fig. 1(a). It is found that the electromagnetic wave at
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FIG. 1. (a) A schematic diagram of a photonic alloy composed of PEC and magnetized YIG rods. (b)–(d) Field distributions |Ez| when the
doping concentration x = 0, 0.5, 1 at 11.60 GHz, respectively. The white dots indicate the position of PEC rods, and the blue stars indicate the
position of line sources. The top, bottom, and left sides of the sample are covered with PEC, and the right side is covered with a wave-absorbing
material.

frequency 11.60 GHz propagate in the bulk region of the PEC
and magnetized YIG photonic crystal, as shown in Figs. 1(b)
and 1(d). The photonic alloy system with random doping of
the two components (x = 0.5) can form a chiral edge state
(CES) at the same frequency, as shown in Fig. 1(c). Here,
the doping concentration x is defined as x = NB/(NA + NB)
with NA and NB representing the number of A-type (PEC)
and B-type (magnetized YIG) rods. In order to explain this
phenomenon, we firstly analyze the band structures of square
lattices under two extreme cases, a lattice composed entirely
of PEC or magnetized YIG rods. We discovered that the band
gaps of these two lattices do not overlap in frequency at
11.60 GHz. The PEC lattice exhibits a topologically trivial
band gap in the frequency range of 11.83 GHz to 12.19 GHz,
while the magnetized YIG lattice possesses a topologically
nontrivial band gap in the frequency range of 10.87 GHz to
11.53 GHz. There is a shift between these two band gaps
such that the band gaps lack an overlapping frequency region,
which is analogous to the broken-gap-type band alignment
in semiconductor heterostructures [67,68]. Additionally, a
phenomenon analogous to band inversion at the M point is
observed for the band gaps of the PEC and magnetized YIG
lattices. Next, the transmission spectrum at different doping
concentrations was calculated. The frequency range of the
photonic alloy transmission gap extends gradually from the
frequency of the PEC band gap to the band gap of the mag-
netized YIG rods, exhibiting an overall downward trend with
the increasing doping concentration. Additionally, a gradual
closing and reopening of the transmission gap in this process
was observed. The topological transition process is validated
using the scattering method. Finally, the emergence of edge
states during this process and their variation with concentra-
tion x from a momentum space perspective is studied.

II. MODEL AND RESULTS

Magnetized YIG material exhibits a magnetic response
only within the microwave frequency range. Metals such as
gold, silver, and copper are considered as PEC within this
same frequency range [19–21]. The relative permittivity of
the YIG rods is 14.5. A static magnetic field, generated
by a permanent magnet, is applied perpendicularly to each
YIG rod. The saturation magnetization 4πMs = 1850 G, and
the gyromagnetic resonance loss width �H = 50 Oe. The

magnetic permeability tensor of the magnetized YIG rods
assumes the following form:

μ =
⎛
⎝ μ1 iμ2 0

−iμ2 μ1 0
0 0 μ0

⎞
⎠, (1)

where μ1 = μ0(1 + ω0ωm

ω2
0−ω2 ), μ2 = μ0

ωωm

ω2
0−ω2 , and μ0 is the per-

meability of vacuum. The resonance frequency ω0 = γ H0,
the characteristic frequency ωm = 4πγ Ms, the gyromagnetic
ratio γ = 2.8 MHz/Oe, and the external magnetic field H0 =
800 Oe along the z direction. Loss is included by taking ω0 →
ω0 + i γ�H

2 . The operating frequency near the center of the
magnetized YIG gap is 11.15 GHz. The material parameters
regarding YIG such as saturation magnetization, gyromag-
netic resonance loss width, and applied magnetic field are the
parameter values used in the experiment [66]. By using these
parameters, the numerical simulations can be directly com-
pared with the experiment results. We employ finite-element
methods to numerically solve Maxwell’s equations with var-
ious boundary conditions and with or without an excited
source, using COMSOL Multiphysics. After computing the
electromagnetic field or their corresponding eigenfrequencies
via COMSOL, we numerically calculate the band structure,
transmission spectrum, reflection phases, and Fourier trans-
formation of the electromagnetic field into momentum space
in the following.

The transverse magnetic (TM) bulk band structure of the
square lattice composed of PEC rods is shown in Fig. 2(a),
where the radius r = 2 mm, and lattice constant a = 18 mm.
Contrary to photonic crystals made of conventional dielectric
materials, there are no eigenstates near the low frequency at
the � point [69]. The entire system maintains time-reversal
symmetry, so the band gap in the frequency range of [11.83,
12.19] GHz is topologically trivial with a Chern number of 0,
situated between the first and second bands. The eigenstates
of the first and second bands at the M point are d-like and
p-like bands, as shown in Figs. 2(c) and 2(d) marked by blue
downward and upward triangles in Fig. 2(a), respectively. The
band structure of the square photonic crystal made of mag-
netized YIG material is depicted in Fig. 2(b), with the same
radius and lattice constant as the PEC photonic crystal. There
is a topological band gap in the frequency range of [10.87,
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FIG. 2. (a)–(b) The TM bulk band structures of PEC/magnetized
YIG photonic crystal, respectively. The lower inset illustrates the
lattice geometry. (c)–(d) The distributions of the eigenmode field
Ez corresponding to the first (blue downward triangle) and second
(blue upward triangle) photonic band at the M point of the PEC
photonic crystal. (e)–(f) The distributions of the eigenmode field Ez

corresponding to the second (red downward triangle) and third (red
upward triangle) photonic band at the M point of the magnetized YIG
photonic crystal.

11.53] GHz with a Chern number of 1, situated between the
second and third bands. The eigenstates of the second and
third bands at the M point are p-like and d-like bands, as
shown in Figs. 2(e) and 2(f) marked by red downward and
upward triangles in Fig. 2(b), respectively. The field distribu-
tion of the eigenstates at the M point indicates a phenomenon
similar to band inversion in these two band gaps. From the
band structures, the lack of overlap between these two band
gaps is analogous to the broken-gap-type band alignment in
semiconductor heterostructures [67,68]. In the following, we
will investigate the band alignment effect in the topological
photonic alloy.

Previous studies have achieved band inversion in the same
crystal by gradually adjusting parameters like rod radius and
position, often resulting in a topological phase transition
[20,22,70]. However, the importance of band inversion be-
tween different crystals has not been extensively explored.
The primary challenge in investigating this issue lies in the
difficulty of finding a continuous and adjustable parameter to
transform between the square lattice composed of PEC rods
and the one composed of magnetized YIG rods. The emer-
gence of topological photonic alloy systems provides a new
platform to the transformation between two completely differ-
ent crystals. Specifically, continuously dopes one type of rods
into the supercell of another type, as illustrated in Fig. 1(a),
with red circles representing magnetized YIG rods and blue
circles representing PEC rods. In the absence of doping, it
corresponds to a PEC photonic crystal, while with complete
doping, it corresponds to a magnetized YIG photonic crystal.
The gradual transition from one type of photonic crystal to
another is achieved by adjusting the doping concentration x.

Now, we demonstrate the corresponding bulk transmission
of alloy systems composed of two distinctly different crys-
tals (PEC and magnetized YIG lattices) with the increase
in doping concentration x, as shown in Fig. 3. The square
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FIG. 3. The simulated transmission spectrum versus x is av-
eraged over 20 disorder samples. The red circles represent the
topological gap calculated from the reflection phase winding. Insets:
Schematic of numerically calculated transmission in topological pho-
tonic alloy systems. The upper and lower boundaries are continuous,
the left and right boundaries are absorbing, and line source location
is marked by a red star.

sample size L used is 30a × 30a. We wish to clarify that x
changes discretely in the finite system with a discrete interval
1/(NA + NB). In the numerical results presented in Fig. 3, the
doping concentration x changes with a step size of 0.02 due to
the high computational cost. To measure bulk transmission,
we connect the top and bottom of the photonic alloy with
continuous boundaries, using absorbing boundaries on the left
and right sides, a line source is placed near the left boundary,
as shown in the inset of Fig. 3. And then we integrate the
Poynting vectors at the left and right boundaries to obtain
the time-averaged energies. Etran represents the energy that
passes through the photonic alloy. Eref is the energy that is
directly reflected by the photonic alloy. The total energy flow-
ing out from both the left and right boundaries is defined as
Etot = Eref + Etran. The bulk transmission is obtained through
〈T 〉 = 〈20log10(Etran/Etot )〉 [21]. From the calculation of the
transmission spectrum, the transmission gap of the topological
photonic alloy converges to the band gap of the PEC lattice
as x tends to 0, while it converges to the band gap of the
magnetized YIG lattice as x tends to 1. During the process of
increasing x, there is a phenomenon of gap closure followed
by reopening, indicating that these two gaps may possess dif-
ferent topological properties. In the frequency intervals region
(between the black dash lines), the photonic alloy is able to
realize the CES by mixing at a certain concentration when
the components are supporting the bulk transport as shown in
Figs. 1(b)–1(d).

Next, we characterize the topological properties of pho-
tonic alloy systems by scattering method [40,54,71–73].
Specifically, we imposed a twisted boundary condition �(y =
L) = �(y = 0)eiθ on the vertical boundaries [54]. The left
side of the photonic alloys is connected to an air lead, bounded
by perfect magnetic conductor (PMC). The right boundary
is set as an absorbing boundary condition, as illustrated in
Fig. 4(a). Figure 4(b) shows the change in reflection phase
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FIG. 4. (a) Schematic for retrieving the topological signature
of CES from the reflection phase connected to a square photonic
alloy with linear size W with a twisted boundary condition �(y =
L) = �(y = 0)eiθ imposed to the vertical boundaries. The left side
of the photonic alloys is connected with an air lead bounded by
PMC (yellow), and the right (purple) boundary is set as scattering
boundary condition. (b)–(c) The blue circles (red squares) represent
the variation of reflection phase φ and transmittance T with respect
to the change of θ at 12.00 GHz when x = 0.06 (at 11.60 GHz when
x = 0.5), respectively. The winding number of the reflection phase
and the maximum transmittance 〈max(T )〉 vary with the doping
concentration x at 12.00 GHz (d) and 11.60 GHz (e), where each
data point represents the average of ten disorder samples.

with the twist angle θ . The blue circle signifies the reflection
phase when x = 0.06 at 12.00 GHz, consistently oscillating
around a specific value. The red square indicates the reflection
phase when x = 0.5 at 11.60 GHz. As θ varies from 0 to 2π ,
the reflection phase φ(θ ) changes cumulatively by 2π , so that
the winding number of reflection phase W = 1 (more details
can be found in Appendix C). Additionally, the corresponding
transmittance T for both cases is zero, as depicted in Fig. 4(c).
These suggest that the topological invariants of the photonic
alloy system differ under these two parameter sets.

By taking a closer look, we calculated the winding number
of the reflection phase and the maximum transmittance at
12.00 GHz as a function of doping concentration x, as de-
picted in Fig. 4(d). In the range of x ∈ [0, 0.08], the maximum
transmittance for ten samples is nearly zero, with minimal
fluctuations. Here, the reflection phase remains constant and
does not complete a 2π rotation, indicating a topologically
trivial gap. However, when x > 0.08, a significant transmit-
tance emerges [〈max(T )〉 > 0], implying that photons can
pass through the bulk. We also calculated the winding num-
ber of the reflection phase at 11.60 GHz as a function of
doping concentration x, as displayed in Fig. 4(e). For x ∈
[0.45, 0.74], the transmittance is nearly zero. In this range, the

reflection phase for corresponding samples accumulates 2π ,
which indicates a topologically nontrivial gap. Corresponding
to real space, there is a CES between the photonic alloy and
PEC boundaries, as shown in Fig. 1(c). When x < 0.45 or
x > 0.74, photons can pass through the bulk. Additionally,
we used scattering methods to calculate the boundaries of
the topological gaps, which are marked with red circles in
Fig. 3. Notably, the transition from a topologically trivial gap
to a nontrivial one in this process differs from the topologi-
cal Anderson insulator in disordered photonic crystals from
a symmetry perspective [50]. The formation of topological
Anderson insulators in disordered photonic crystals is driven
by the competition between time-inversion and spatial inver-
sion symmetry. While our model maintains spatial inversion
symmetry on average over multiple samples [74–77].

Finally, by applying Fourier transformation to real-space
electromagnetic fields, the gradual appearance of the CES
is identified in momentum space. Figure 5(a) presents a
schematic of the calculated edge states in momentum space,
with boundary conditions identical to those in Figs. 1(b)–1(d).
The orange star denotes the line source’s position, and the
black solid line along the bottom boundary indicates the posi-
tion for extracting the edge states’ electric field. As there is no
electric-field distribution in the PEC rod, we chose a location
6 mm from the PEC boundary (3 mm from the center of
lowermost rods) and a straight line 26a in length. By Fourier
transforming the extracted electric-field data, we can ascertain
the edge states in momentum space. Initially, with x = 0, al-
most no band is present in the bulk transmission gap (between
the two white solid lines), as depicted in Fig. 5(b). This lack of
band occurs because edge states do not form in topologically
trivial crystals, as indicated in Fig. 1(b). However, at x = 1,
a continuous band emerges in the band-gap region (between
the two white solid lines), as depicted in Fig. 5(l). Beyond the
upper boundary of the gap, the edge state within the bulk band
is still observable, corresponding to the real space as shown in
Fig. 1(d). As x increases to 0.4, topological edge states appear
in the gap region. As x continues to increase, the gap broadens,
making the topological edge states more evident, which is
a manifestation of the band-alignment effect in momentum
space. Moreover, in the range 0.4 � x � 0.9, topological edge
states in the bulk band are subdued due to the crystal’s disor-
dered arrangement, as depicted in Figs. 5(f)–5(k). The curves
of topological edge states in momentum space beyond the
upper gap become dark, even chaotic, yet the curves in the
gap region manage to retain clear bandlike structures.

III. CONCLUSIONS AND OUTLOOK

In summary, we have created a topological photonic alloy
by randomly doping PEC and magnetized YIG rods in a
square lattice. It is worth noting that the edge states of the
topological photonics alloy can appear at the frequency range
where both constituent components are in their bulk states.
We analyze the PEC lattice and magnetized YIG lattice band
gaps appearing in a broken-gap type of band alignment and
there is a band inversionlike phenomenon between these two
lattices at the M point. Subsequently, the transmission spec-
trum, calculated at different doping concentrations, shows the
photonic alloy transmission gap shifting from the PEC band
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FIG. 5. (a) Schematic diagram for calculating the edge state in momentum space. The orange star marks the position of the line
source. The black line indicates the location of the extracted electric field data. (b)–(l) The edge state in momentum space for x =
0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, respectively. The solid white solid lines indicate the average transmission gaps across 20 samples.

gap to the magnetized YIG band gap, gradually closing and
reopening the gap. Furthermore, the emergence of robust one-
way edge states in the topological gap where x ranges from 0.4
to 1 was verified, and the topological invariant was calculated
using scattering methods. Finally, by Fourier transforming the
real-space fields, the edge states in momentum space were ob-
tained, confirming the gradual appearance of edge states with
increasing doping concentration x in these photonic alloys.
The proposed experimental setup is simple, utilizing common
materials, and it is hoped that it can be implemented in the
near future on microwave photonic experimental platforms.
The noteworthy point is that the alloy doping method is not
limited to magnetized materials and can be extended to ordi-
nary dielectric materials, allowing topological photonic alloys
to be generalized to the optical frequency range. Looking
ahead, combining deep learning for the reverse design of
photonic crystals with different band structures [78–81] and
leveraging alloy doping holds the promise of achieving even
more diverse topological effects. This lays the foundation for
the flexible application of topological physics in photonic
devices.
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APPENDIX A: NUMERICAL CALCULATION
OF PHOTONIC BAND STRUCTURES

We choose the primitive cell in the PEC/magnetized YIG
photonic crystal, as shown in the insets of Figs. 2(a) and 2(b).
We connect the top and bottom and left and right boundaries
of the primitive cell with periodic boundaries. The x- and y-
direction Bloch wave vectors kx and ky are set so that a path in
the momentum space from � (kx = 0, ky = 0) to X (kx = π/a,
ky = 0) and then to M (kx = π/a, ky = π/a) and finally back
to the � point in the first Brillouin zone. Finally, the variation
of the eigenfrequencies with k-point paths is plotted to obtain
the band structure shown in Figs. 2(a) and 2(b).

APPENDIX B: THE CHERN NUMBER FOR PERIODIC
PHOTONIC CRYSTAL

In the formulation of Maxwell’s equation, the periodic part
of the eigenfunctions of the electric field un(k, r) = 〈r|un(k)〉
is the 3-component vector of complex electromagnetic fields
[18], as shown in below:

un(k, r) = En(k, r)e−ik·r. (B1)

For TM modes, the magnetic field is confined to the xy plane.
Therefore, the nonzero components of the magnetic field are
Hx(r), Hy(r). Meanwhile, the electric field becomes a scalar
function, Ez(r) being the only nonzero vector component. The
electromagnetic field are numerically calculated by COM-
SOL.
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The Chern number of the nth photonic band for two-
dimensional (2D) systems is defined as

Cn = 1

2π

∮
BZ


z
n(k)d2k, (B2)

�n(k) = i∇k × 〈un(k, r)|∇k|un(k, r)〉, (B3)

where 
z
n is the z component of Berry curvature �n(k), the

k-space integral in Eq. (B2) is performed over the first Bril-
louin zone with [kx, ky], and the Berry curvature is defined as
Eq. (B3) [4]. The gap Chern number (Cgap = ∑

n Cn) is to sum
the Chern numbers of all bands below the band gap [20].

APPENDIX C: THE WINDING NUMBER
OF THE REFLECTION PHASE

OF NONPERIODIC PHOTONIC SYSTEMS

In this section, we introduce that the winding number of
the reflection phase can be used to characterize the topology
of nonperiodic optical systems. In the scattering process of an
incident field E+

z (θ, ω) impinging upon the photonic alloy, a
reflection matrix R relates the reflected wave to the incident
wave as E−

z (θ, ω) = RE+
z (θ, ω), as shown in Fig. 4(a) of the

main text. The reflection matrix R is a function of frequency
and twist angle θ of the boundary condition. Inside the gap
of the photonic alloy, R = eiφ ∈ U(1). When we adiabatically
vary θ over a period (from θ to 2π ), the first homotopy group
of π1(U(1)) = Z characterizes the topological classification
of the evolutions of reflection R. Denoting by the integer
winding number of the reflection phase φ(θ ) = arg(R(θ )) is

W = −i

2π

∫ 2π

0

∂ ln R

∂θ
dθ = 1

2π

∫ 2π

0

∂φ

∂θ
dθ ∈ Z. (C1)

Physically, the application of twisted boundary conditions can
be viewed as an adiabatically changing gauge flux (black)
θ threading the hollow of a rolled-up photonic alloy. The
winding of the reflection phase method can be effectively
viewed as a “topological quantum pump” [82,83]. The results
of reflection phases are presented in Fig. 4. Given a twisting
boundary angle θ , an electric field Ez is incident from the left
port as shown in Fig. 4(a). The reflection phase is finally found
by examining the scattering matrix. As θ changes from 0 to
2π , the reflection phase φ(θ ) changes cumulatively by 2π in
the gap, similar to the Wilson loop, indicating that the system
is topologically nontrivial.
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waveguides of large Chern numbers, Phys. Rev. Lett. 113,
113904 (2014).

[21] S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and
M. Soljačić, Experimental observation of large Chern numbers
in photonic crystals, Phys. Rev. Lett. 115, 253901 (2015).

[22] L.-H. Wu and X. Hu, Scheme for achieving a topological pho-
tonic crystal by using dielectric material, Phys. Rev. Lett. 114,
223901 (2015).

[23] S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W.
DeGottardi, M. Hafezi, and E. Waks, A topological quantum
optics interface, Science 359, 666 (2018).

[24] M. I. Shalaev, W. Walasik, A. Tsukernik, Y. Xu, and
N. M. Litchinitser, Robust topologically protected transport
in photonic crystals at telecommunication wavelengths, Nat.
Nanotechnol. 14, 31 (2019).

[25] Y. Yang, Y. Yamagami, X. Yu, P. Pitchappa, J. Webber, B.
Zhang, M. Fujita, T. Nagatsuma, and R. Singh, Terahertz

094206-6

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/s41377-020-0331-y
https://doi.org/10.1038/s41578-022-00465-6
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1038/nature13915
https://doi.org/10.1103/PhysRevLett.114.114301
https://doi.org/10.1038/nphys3867
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.96.106802
https://doi.org/10.1126/science.1133734
https://doi.org/10.1103/PhysRevLett.99.236809
https://doi.org/10.1038/nphys547
https://doi.org/10.1103/PhysRevLett.112.106802
https://doi.org/10.1126/science.1250140
https://doi.org/10.1103/PhysRevLett.100.013904
https://doi.org/10.1038/nature08293
https://doi.org/10.1103/PhysRevLett.113.113904
https://doi.org/10.1103/PhysRevLett.115.253901
https://doi.org/10.1103/PhysRevLett.114.223901
https://doi.org/10.1126/science.aaq0327
https://doi.org/10.1038/s41565-018-0297-6


BAND-ALIGNMENT EFFECT IN A TOPOLOGICAL … PHYSICAL REVIEW B 110, 094206 (2024)

topological photonics for on-chip communication, Nat.
Photonics 14, 446 (2020).

[26] M. Wang, R.-Y. Zhang, L. Zhang, D. Wang, Q. Guo, Z.-Q.
Zhang, and C. T. Chan, Topological one-way large-area waveg-
uide states in magnetic photonic crystals, Phys. Rev. Lett. 126,
067401 (2021).

[27] T. Ma and G. Shvets, All-Si valley-Hall photonic topological
insulator, New J. Phys. 18, 025012 (2016).

[28] J.-W. Dong, X.-D. Chen, H. Zhu, Y. Wang, and X. Zhang, Valley
photonic crystals for control of spin and topology, Nat. Mater.
16, 298 (2017).

[29] Z. Lan, M. L. N. Chen, J. W. You, and W. E. I. Sha, Large-area
quantum-spin-hall waveguide states in a three-layer topological
photonic crystal heterostructure, Phys. Rev. A 107, L041501
(2023).

[30] S. Li, M. L. N. Chen, Z. Lan, and P. Li, Coexistence of
large-area topological pseudospin and valley states in a tri-band
heterostructure system, Opt. Lett. 48, 4693 (2023).

[31] J. Li, J. Yao, Y. Wang, Z. Zhou, A. A. Kudryavtsev, Z. Lan, and
C. Yuan, Observation of nontrivial Zak phase induced topolog-
ical states in glow discharge plasma, APL Photonics 8, 066102
(2023).

[32] H. Zhang, R. Xie, X. Tao, and J. Gao, Topological valley-locked
waveguides with C4 impurity, Nanophotonics 13, 3727 (2024).

[33] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C.
Felser, M. I. Aroyo, and B. A. Bernevig, Topological quantum
chemistry, Nature (London) 547, 298 (2017).

[34] Y. Liu, S. Leung, F.-F. Li, Z.-K. Lin, X. Tao, Y. Poo,
and J.-H. Jiang, Bulk–disclination correspondence in topo-
logical crystalline insulators, Nature (London) 589, 381
(2021).

[35] W. A. Benalcazar, T. Li, and T. L. Hughes, Quantization of frac-
tional corner charge in Cn-symmetric higher-order topological
crystalline insulators, Phys. Rev. B 99, 245151 (2019).

[36] M. B. de Paz, M. G. Vergniory, D. Bercioux, A. García-Etxarri,
and B. Bradlyn, Engineering fragile topology in photonic crys-
tals: Topological quantum chemistry of light, Phys. Rev. Res. 1,
032005(R) (2019).

[37] H. C. Po, A. Vishwanath, and H. Watanabe, Symmetry-based
indicators of band topology in the 230 space groups, Nat.
Commun. 8, 50 (2017).

[38] A. Ghorashi, S. Vaidya, M. C. Rechtsman, W. A. Benalcazar,
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