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Pure optical twist with zero net torque
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Abstract: In photonic systems, bilayer or multilayer systems exhibit numerous exciting phenom-
ena induced by twisting. Thus, it is highly desired to explore the twisting effect by engineering
the light-matter interactions. Optical torque, an important means in optical micromanipulation,
can rotate micro-objects in various ways, enabling a wide range of promising applications. In this
study, we present an interesting phenomenon called “pure optical twist” (POT), which emerges
when a bilayer structure with specific symmetry is illuminated by counter-propagating lights
with opposite spin and/or orbital angular momentum. Remarkably, this leads to zero net optical
torque but yet possesses an interesting mechanical effect of bilayer system twisting. The crucial
determinant of this phenomenon is the rotational symmetries of each layer, which govern the
allowed azimuthal channels of the scattered wave. When the rotational symmetries do not allow
these channels to overlap, no resultant torque is observed. Our work will encourage further
exploration of the twisting effect through engineered light-matter interactions. This opens up
the possibility of creating twisted bilayer systems using optical means, and constructing a stable
bilayer optical motor that maintains identical rotation frequencies for both layers.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Objects, in general, experience optical torque when exposed to an external optical field, as has
been extensively studied [1–3]. As an important means in optical micromanipulation [4–11],
optical torque [12,13] can rotate micro-objects in different ways [14–16]. It is capable of doing
mechanical work and can provide various promising applications, such as optical spanners [17,18],
optical motors [19–22], optical matter machines [2,23–25], among others [26–29]. However,
zero optical torque typically requires a force that acts through the center of mass, or the particle
possessing pertinent symmetries, or just happens by chance, such as when the torque is switching
signs. Here we identified a new mechanism that enforces zero net optical torque but yet produces
an interesting mechanical effect of bilayer system twisting. This could assist in constructing a
stable bilayer optical motor that keeps the rotation frequencies identical for both layers. Moreover,
in photonic systems, bilayer or multilayer material systems exhibit numerous exciting phenomena
induced by twisting [30,31], such as broadband strongly bianisotropic responses [32], photonic
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topological transition [33–35], and so on [36,37]. Thus, it is highly desired to explore the twisting
effect by engineering the light-matter interactions [38,39].

In this work, we consider an arbitrary bilayer structure, where the upper and lower layers are
identical and have the degree of rotational symmetry ms. The bilayer structure laying on the
xy-plane is illuminated by two incident lights propagating along ±z direction with opposite spin
and/or orbital angular momentum [see Fig. 1(a) as an example]. In certain bilayer structures with
specific ms, the optical torque acting on each layer can be equal and opposite during rotation,
irrespective of their relative orientation or the overall symmetry of the system. This optical twist
with zero net optical torque is referred as pure optical twist (POT), which is an analogy definition
with the pure spin current (a flow of spins without any net charge current) in condensed matter
physics. The POT relies on the rotational symmetry of each layer rather than other structural
details. Whereas certain rotational symmetries of bilayer systems presenting robust POT are
closely related to the azimuthal channels of each incident light, which is determined by the angular
analogue of Floquet’s theorem [40–42]. We will first numerically demonstrate the existence of
POT by full-wave simulations and then analytically formulate its underlying principle.
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Fig. 1. (a) Schematic of a bilayer structure illuminated by two counter-propagating
circularly polarized plane waves with opposite helicities. (b)-(e) Optical torques versus
the twist angle 𝜑 for bilayer structures with different degrees of rotational symmetry
𝑚𝑠 = 1, 2, 3, and 4. The structures are depicted in the insets. The permittivity of
dielectric spheres is 𝜀 = 12.25 [43, 44] with the radius 𝑅 = 100 nm. The nearest
sphere distance within the same layer and the interlayer distance are arbitrarily set to
𝐷 = 2𝑅 + 300 nm (center of sphere to center of sphere). The wavelength and intensity
of each incident light are 𝜆 = 532 nm and 1 mW/𝜇m2, respectively.
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2. Pure optical twist in bilayer systems61

To enhance clarity and comprehension, we begin by considering an incident light composed
of two counter-propagating plane waves with opposite helicities (𝜎1 = 1, 𝜎2 = −1) [41,45], as

Fig. 1. (a) Schematic of a bilayer structure illuminated by two counter-propagating circularly
polarized plane waves with opposite helicities. (b)-(e) Optical torques versus the twist angle
φ for bilayer structures with different degrees of rotational symmetry ms = 1, 2, 3, and 4.
The structures are depicted in the insets. The permittivity of dielectric spheres is ε = 12.25
[43,44] with the radius R = 100 nm. The nearest sphere distance within the same layer and
the interlayer distance are arbitrarily set to D = 2R + 300 nm (center of sphere to center of
sphere). The wavelength and intensity of each incident light are λ = 532 nm and 1 mW/µm2,
respectively.

2. Pure optical twist in bilayer systems

To enhance clarity and comprehension, we begin by considering an incident light composed
of two counter-propagating plane waves with opposite helicities (σ1 = 1, σ2 = −1) [41,45], as
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illustrated in Fig. 1(a). The electric fields of the two plane waves are expressed as

E1 =
1√
2

E0
(︁
ex + iey

)︁
ei(kz+φ1),

E2 =
1√
2

E0
(︁
ex − iey

)︁
e−i(kz+φ2),

(1)

where ϕ1 and ϕ2 are constant phases, and the time dependence e−iωt has been assumed and
omitted for simplicity. Later, we will also analyze more scenarios involving counter-propagating
waves carrying spin and/or orbital angular momentum.

For the ease and accuracy of computation and interpretation, we start by considering a bilayer
structure consisting of a collection of identical dielectric or metallic spheres. Here, the particle
structures are chosen to satisfy different rotational symmetries, disregarding the formation of
these structures. The distance between particles is chosen arbitrarily as it doesn’t affect the
occurrence of the observed phenomena (see Fig. S1 in the Supplement 1). We stress that our
conclusion remains valid for a bilayer structure comprising continuous pieces of material, as
evidenced later. The two identical and parallel layers of spheres stack along the z direction, with
the lower and upper layers laying symmetrically at z<0 and z>0, respectively. The time-averaged
optical torques exerted individually on the upper and lower layers of the bilayer structure are
calculated by [44]

ΓU,L =
∑︂

i∈U,L
(τi + ri × Fi) , (2)

where U/L represents the particle cluster in the upper/lower layer. The torque’s origin for each
layer is fixed at its center of mass and ri is the position vector of the i-th sphere measured from
the center of mass of each layer.

Fi =

∬
ςi

T · ndS (3)

is the time-averaged optical force exerted on the i-th sphere, ςi is the surface of the i-th sphere,
and n denotes the unit outward normal at surface ςi.

τi =

∬
ςi

(︂
r′i × T

)︂
· ndS (4)

is the torque acting on the i-th sphere about its center, which vanishes when the sphere is
non-absorptive. r′i is the vector from the center of the sphere to the integral surface, and the
time-averaged Maxwell stress tensor T can be evaluated by using the generalized Lorentz-Mie
scattering theory for multi-spheres [46,47]. In the following, we only focus on the z component
of the torque, i.e., ΓU,L

z and ΓT
z = Γ

U
z + Γ

L
z , to characterize the twist of the bilayer system.

Figures 1(b)–1(e) show the optical torques ΓU,L,T
z versus the twist angle φ between the two

layers of bilayer systems with four different rotational symmetries. It is immediately seen that
the net optical torques ΓT

z are in general nonzero, i.e., ΓU
z ≠ −ΓL

z , for the systems with rotational
symmetry ms = 1, 2. In contrast, zero net optical torque is generated for systems with ms = 3, 4,
demonstrating POT. Usually, the optical torque can be affected by the phase because altering the
phases ϕ1 and ϕ2 in Eq. (1) leads to a change in the polarization angle of the optical field and
hence the optical torque. Figures 1(b)–1(c) (ms = 1, 2) indeed demonstrate a clear dependence
of the optical torque on the phase. However, we observe a strikingly different behavior in
Figs. 1(d)–1(e) (ms = 3, 4), where the POT appears to be completely unaffected by any changes
in the phase. The phase shift-insensitive POT greatly facilitates the experimental implementation.
Moreover, POT demonstrates robustness against weak symmetry breaking caused by the structure.
For instance, for the bilayer structure used in Fig. 1(d), POT remains robust even if the two layers

https://doi.org/10.6084/m9.figshare.25209362
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lack strict three-fold symmetry or exhibit slight differences (see Fig. S2 in the Supplement 1 for
more details). This robustness is helpful to experimental observation of the POT phenomenon
where imperfect settings always exist.

One can image that, in cases where there is no net angular momentum inflow from the total
incident light, the scattered light in a system with certain symmetry can also possess zero net
angular momentum, resulting in the system acquiring zero torque. However, the scattering
process is complex. In order to rigorously demonstrate the reason behind the absence of net
torque (i.e. POT), we resort to the equivalent expression of the optical torque by the T-matrix
method [40–42,48],

Γ
T
z = c0Re

∞∑︂
l=1

l∑︂
m=−l

m
[︂
pmla∗ml + qmlb∗ml −

(︂
|aml |2 + |bml |2

)︂]︂
, (5)

where c0 = 2πε0 |E0 |2 /k3. Equation (5) can be derived by extending the integrating sphere
in Eq. (4) to encompass the entire bilayer structure, with the center of the integrating sphere
set as the center of the entire structure. Additionally, the total electromagnetic fields in the
time-averaged Maxwell stress tensor are expanded using vector spherical wave functions [41,49].
pml and qml (aml and bml) denote the partial wave expansion coefficients [50,51] for incident
(scattered) waves (see Supplement 1 for more details). Our calculations are accurate within
classical electrodynamics, and the numerical convergence is governed by the maximum angular
momentum (set to 60 for the considered size parameters) at which the series expansion was
truncated. It is worth noting that pml and qml can only be nonzero when m equals its corresponding
incident azimuthal channel. This approach allows us to analyze the necessary conditions to
generate POT appropriately. Since the incident light is composed of two waves, the partial wave
expansion coefficients in Eq. (5) can be rewritten as

χml = χ1,ml + χ2,ml, (6)

where χ denotes p, q, a, and b, and the subscripts 1 and 2 correspond to the first and second
incident waves and their respective scattered waves. Then the net optical torque can be divided
into three parts by substituting Eq. (6) into Eq. (5)

Γ
T
z = Γ1,z + Γ2,z + Γ3,z, (7)

where

Γ1,z = c0 Re
∞∑︂

l=1

l∑︂
m=−l

m
[︂
p1,mla∗1,ml + q1,mlb∗1,ml −

(︁|︁|︁a1,ml
|︁|︁2 + |︁|︁b1,ml

|︁|︁2)︁ ]︂ , (8a)

Γ2,z = c0 Re
∞∑︂

l=1

l∑︂
m=−l

m
[︂
p2,mla∗2,ml + q2,mlb∗2,ml −

(︂|︁|︁a2,ml
|︁|︁2 + |︁|︁b2,ml

|︁|︁2)︂]︂ , (8b)

Γ3,z = c0 Re
∞∑︂

l=1

l∑︂
m=−l

m
[︂
p1,mla∗2,ml + p2,mla∗1,ml + q1,mlb∗2,ml + q2,mlb∗1,ml

− (a1,mla∗2,ml + a2,mla∗1,ml + b1,mlb∗2,ml + b2,mlb∗1,ml)
]︂
.

(8c)

The terms Γ1,z and Γ2,z represent the optical torques generated by the first and second plane
waves, respectively. Since the helicities of these two plane waves are opposite, Γ1,z and Γ2,z
cancel each other. Consequently, the net optical torque is solely determined by Γ3,z, termed the
interference contribution. The expression for Γ3,z indicates that only partial waves involving the
same azimuthal channel m contribute to the z component of the net optical torque.

https://doi.org/10.6084/m9.figshare.25209362
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According to the angular analogue of the Floquet’s theorem [40,41] (see also, Ref. [42] for a
simple proof), the allowed azimuthal channels m of the scattered photons from a scatter with the
degree of rotational symmetry ms are

m = mi + n × ms, (9)

where mi is the azimuthal channel of the i-th incident wave, with i = 1, 2 and n = 0,±1,±2,. . . .
An important consequence of Eq. (9) is that the interference term Γ3,z in Eq. (8) does not vanish
only when the degree of the system’s rotational symmetry ms satisfies

ms =
|︁|︁|︁m1 − m2

N

|︁|︁|︁ , (10)

where N is an integer. When using the incident fields described by Eq. (1) with the incident
azimuthal channel m1 = 1 and m2 = −1 [24,42,49], Fig. 2 illustrates the allowed azimuthal
channels of scattered photons when the incident light is scattered by a bilayer structure with ms
degrees of rotational symmetry. The first row of circles represents the azimuthal channels when
the incident light with azimuthal channel m1 = 1 is scattered by the bilayer structure. Similarly,
the second row of circles represents the azimuthal channels when the counter-propagating incident
light with azimuthal channel m2 = −1 is scattered by the same structure. For bilayer structures
with a degree of rotational symmetry of ms = 1 or 2, circles with the same value can be found
from the upper and lower rows. For example, when ms = 1, the value of circle 1 − 3 × ms in
the first row equals −1 − 1 × ms in the second row. These circles are connected by a red line.
Similarly, for ms = 2, the value of circle 1 − 3 × ms in the first row equals −1 − 2 × ms in the
second row, and they are connected by a blue line. However, for bilayer structures with rotational
symmetry of ms = 3 or larger, circles with the same value cannot be found in these two rows.
Instead, they are represented by green cross lines. Therefore, only systems with the degree of
rotational symmetry ms = 1 and 2 are capable of scattering both incident waves into identical
azimuthal channels, thus contributing to the value of Γ3,z. While for ms ≥ 3, the angular analogue
of the Floquet’s theorem [Eq. (9)] and its resultant condition [Eq. (10)] prohibit the two incident
waves from being scattered into the same azimuthal channel m.

Consequently, this leads to the vanishing of the interference torque Γ3,z and, in turn, the
vanishing of the POT. The vanishing of Γ3,z for ms ≥ 3 can be understood as the scattered fields
from both layers are “orthogonal” in terms of angular momentum calculation. As a result, POT
is immune to the phase shift in both beams, as illustrated in Figs. 1(d) and 1(e). As its underlying
physics originates fundamentally from the rotational symmetry of the structure, the POT is
not limited to a system composed of spherical particles, as will be shown latter. Moreover,
Eqs. (7)–(8) can be applied to structures consisting of any number of layers. As long as the
rotational symmetry of the structure does not satisfy Eq. (10), the total optical torque can be
ensured to be zero, that is, the occurrence of POT (see Fig. S3 in the Supplement 1 for more
details).

Before moving on to more generalized cases, we discuss the possibility of the POT for the
structure with ms<3, which is subjected to counter-propagating plane waves illumination. Are
there any special cases for structures with ms<3 that can generate POT? In other words, how can
POT be achieved for a bilayer structure whose symmetry satisfies Eq. (10)? In Figs. 3(a) and
3(b), we present optical torques as functions of the phase difference (∆ϕ = ϕ2 − ϕ1, ϕ1 is, for
example, fixed to π/3) for systems with the degree of rotational symmetry ms = 3 and ms = 2,
respectively, while arbitrarily choosing the twist angle φ as 130◦. Figure 3(a) confirms that for
ms = 3, ΓL

z = −ΓU
z holds true regardless of the phase difference ∆ϕ. However, for the system

with ms = 2, Fig. 3(b) shows that ΓL
z and −ΓU

z are generally different due to the presence of the
non-zero interference term Γ3,z. Interestingly, at specific points such as ∆ϕ = π/3, 4π/3, the
net optical torque can also be zero with ΓL

z = −ΓU
z . Further analysis of individual partial wave

https://doi.org/10.6084/m9.figshare.25209362
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Fig. 2. The circles represent the allowed azimuthal channels of scattered photons
when incident lights, described by Eq. (1), are scattered by a bilayer structure. The
upper/lower row of circles corresponds to the azimuthal channels when incident light
with azimuthal channel 𝑚1 = 1/𝑚2 = −1 is scattered by a bilayer structure with a
rotational symmetry of 𝑚𝑠 . For bilayer structures with rotational symmetry of 𝑚𝑠 = 1
or 2, circles with the same value can be found in both rows, connected by red or blue
lines, indicating that they correspond to the same azimuthal channel. However, for
bilayer structures with rotational symmetry of 𝑚𝑠 = 3 or larger, circles with the same
value cannot be found in these two rows, represented by green cross lines, indicating
that the same azimuthal channel of scattered photons cannot be generated.
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Γ𝑇
𝑧 = 𝑐0Re

∞∑︁
𝑙=1

𝑙∑︁
𝑚=−𝑙

𝑚

[
𝑝𝑚𝑙𝑎

∗
𝑚𝑙 + 𝑞𝑚𝑙𝑏

∗
𝑚𝑙 −

(
|𝑎𝑚𝑙 |2 + |𝑏𝑚𝑙 |2

)]
, (5)

where 𝑐0 = 2𝜋𝜀0 |𝐸0 |2 /𝑘3. Equation (5) can be derived by extending the integrating sphere106
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incident azimuthal channel. This approach allows us to analyze the necessary conditions to115

generate POT appropriately. Since the incident light is composed of two waves, the partial wave116
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𝜒𝑚𝑙 = 𝜒1,𝑚𝑙 + 𝜒2,𝑚𝑙 , (6)

Fig. 2. The circles represent the allowed azimuthal channels of scattered photons when
incident lights, described by Eq. (1), are scattered by a bilayer structure. The upper/lower
row of circles corresponds to the azimuthal channels when incident light with azimuthal
channel m1 = 1/m2 = −1 is scattered by a bilayer structure with a rotational symmetry of ms.
For bilayer structures with rotational symmetry of ms = 1 or 2, circles with the same value
can be found in both rows, connected by red or blue lines, indicating that they correspond to
the same azimuthal channel. However, for bilayer structures with rotational symmetry of
ms = 3 or larger, circles with the same value cannot be found in these two rows, represented
by green cross lines, indicating that the same azimuthal channel of scattered photons cannot
be generated.

azimuthal channels in Γ3,z reveals that contributions from channels ±m cancel each other at these
particular phase differences. Figure 3(c) illustrates the contributions from dominant azimuthal
channels in Γ3,z when ∆ϕ = π/3, corresponding to the red star in Fig. 3(b). The contributions
from m = 1, 3 precisely opposite those from m = −1,−3, resulting in a zero net optical torque. It
is worth noting that both the total incident field of Eq. (1) situated on the bilayer structure planes
[z = ±D/2, represented by the red arrows in the inset of Fig. 3(c)] and the bilayer structure itself
[represented by the black lines in the inset of Fig. 3(c)] exhibit mirror symmetry with respect
to the y direction when projected on the xy-plane in this situation. Other special points with
zero net optical torque correspond to “mirror” symmetries along either the x or y directions.
Furthermore, we explicitly present the results for ∆ϕ = 2π/3 [blue stars in Fig. 3(b)] in Fig. 3(d).
Here, the contributions from m and −m no longer cancel each other since the total incident
field lose “mirror” symmetry along the x and y directions, as shown in the inset of Fig. 3(d).
This finding reveals the crucial role of “mirror” symmetry [40] in achieving the POT when the
resultant condition of the angular Floquet’s theorem [Eq. (10)] is satisfied. It represents a typical
scenario where the POT occurs “accidentally”. In the following, we will exclude this “accidental”
case induced by the particular phase difference and focus on the POT that is due to the symmetry
and immune to the phase.

Next, we investigate POT on a bilayer structure in the illumination of beams carrying both
orbital angular momentum (OAM) and spin angular momentum (SAM). The Laguerre-Gaussian
(LG) beams [40,41] serve best for this purpose. When two linearly polarized counter-propagating
LG beams carry OAM characterized by l1 = 3, l2 = −3 [40], the corresponding incident azimuthal
channels are m1 = l1 ± 1 = 2, 4 and m2 = l2 ± 1 = −2,−4. Here, the ±1 values correspond to
linear polarization (see Sec. 2 in the Supplement 1), which can be considered as a superposition
of circular polarizations with σ = 1 and −1. Thus m1 − m2 take values of 4, 6, 8. According
to Eq. (10), there will not be POT if ms is a divisor of m1 − m2. Therefore, POT will occur
for ms = 5, 7, 9, and so on, as illustrated in Fig. 4(a) (depicted as blue dots), obtained through
numerical calculations based on the multi-spheres scattering theory [46,47]. On the other hand,
when the two LG beams are circularly polarized with σ1 = 1 and σ2 = −1, the incident azimuthal

https://doi.org/10.6084/m9.figshare.25209362
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analogue of the Floquet’s theorem [Eq. (9)] and its resultant condition [Eq. (10)] prohibit the148

two incident waves from being scattered into the same azimuthal channel 𝑚.149

Fig. 3. Optical torques exerted on the lower and upper (opposite value of Γ𝑈𝑧 is taken to
facilitate comparison) layers of a bilayer system (twist angle 𝜑 = 130◦) versus the phase
difference Δ𝜙 are shown in (a) 𝑚𝑠 = 3 and (b) 𝑚𝑠 = 2. The wavelength and intensity of
the two incident counter-propagating plane waves (𝜎1 = 1, 𝜎2 = -1) is 𝜆 = 532 nm and 1
mW/𝜇m2, respectively. For 𝑚𝑠 = 2, the contributions to the torque Γ3,𝑧 by individual
dominant partial wave azimuthal channels are depicted versus 𝑘𝑅 in panels (c) and (d)
for Δ𝜙 = 𝜋/3 and Δ𝜙 = 2𝜋/3, respectively. In the insets of (c) and (d), the black solid
lines and dashed lines represent the upper and lower layers of the bilayer structure with
𝑚𝑠 = 2 projected onto the 𝑥𝑦-plane, respectively. These lines can be visualized as the
axis passing through the three spheres in each layer. The red/blue solid line arrow or
dashed arrow in the insets of (c)/(d) indicates the direction of the total incident field
projected onto the 𝑥𝑦-plane at 𝑧 = 𝐷/2 or 𝑧 = −𝐷/2. Other parameters of the system
are 𝜀 = 12.25, 𝑅 = 100 nm, and 𝐷 = 500 nm.

Consequently, this leads to the vanishing of the interference torque Γ3,𝑧 and, in turn, the150

vanishing of the POT. The vanishing of Γ3,𝑧 for 𝑚𝑠 ≥ 3 can be understood as the scattered fields151
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physics originates fundamentally from the rotational symmetry of the structure, the POT is not154

limited to a system composed of spherical particles, as will be shown latter. Moreover, Eqs.155

(7)-(8) can be applied to structures consisting of any number of layers. As long as the rotational156

symmetry of the structure does not satisfy Eq. (10), the total optical torque can be ensured to be157

Fig. 3. Optical torques exerted on the lower and upper (opposite value of ΓU
z is taken to

facilitate comparison) layers of a bilayer system (twist angle φ = 130◦) versus the phase
difference ∆ϕ are shown in (a) ms = 3 and (b) ms = 2. The wavelength and intensity of
the two incident counter-propagating plane waves (σ1 = 1, σ2 = −1) is λ = 532 nm and
1 mW/µm2, respectively. For ms = 2, the contributions to the torque Γ3,z by individual
dominant partial wave azimuthal channels are depicted versus kR in panels (c) and (d) for
∆ϕ = π/3 and ∆ϕ = 2π/3, respectively. In the insets of (c) and (d), the black solid lines
and dashed lines represent the upper and lower layers of the bilayer structure with ms = 2
projected onto the xy-plane, respectively. These lines can be visualized as the axis passing
through the three spheres in each layer. The red/blue solid line arrow or dashed arrow in the
insets of (c)/(d) indicates the direction of the total incident field projected onto the xy-plane
at z = D/2 or z = −D/2. Other parameters of the system are ε = 12.25, R = 100 nm, and
D = 500 nm.

channels are m1 = l1 +σ1 = 4 and m2 = l2 +σ2 = −4. Following Eq. (10), the POT will show up
when ms is not a divisor of m1 −m2 = 8. In other words, the POT occurs for ms = 3, 5, 6, 7, 9, and
so forth, as corroborated by numerical results (denoted by red squares) in Fig. 4(a). Furthermore,
in the case where l1 = 1, l2 = −1, σ1 = −1, and σ2 = 1, we find that m1 = m2 = 0, resulting in any
ms being a divisor of m1 −m2 = 0. Consequently, the production of the POT becomes impossible
for any structures under these conditions, as illustrated in Fig. 4(b). Table 1 showcases additional
instances of counter-propagating waves carrying spin and/or orbital angular momentum.

Our analysis reveals that the emergence of the POT is solely dependent on the appropriate
symmetry of the system, irrespective of other system details. To further validate this finding,
we examine a bilayer structure comprising two absorptive gold square plates (instead of sphere
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zero, that is, the occurrence of POT (see Fig. S3 in the Supplement 1 for more details).158

Before moving on to more generalized cases, we discuss the possibility of the POT for the159

structure with 𝑚𝑠 < 3, which is subjected to counter-propagating plane waves illumination. Are

Fig. 4. The net optical torque exerted on a bilayer structure composed of identical
silver [44] spheres (𝑅 = 100 nm, 𝐷 = 2𝑅+200 nm, twist angle 𝜑 = 30◦) illuminated
by counter-propagating LG beams (numerical aperture NA = 0.6, beam power 0.1 W,
𝜆 =532 nm, and phase shift 𝜙1 = 𝜋/3, 𝜙2 = 𝜋/4) versus 𝑚𝑠 are shown in (a) 𝑙1 = 3, 𝑙2
= -3 and (b) 𝑙1 = 1, 𝑙2 = -1, 𝜎1 = -1, 𝜎2 = 1. The structures of 𝑚𝑠 = 1, 2, 3, 4 use the
same structures as those shown in Figs. 1(b)-1(e), and structures of 𝑚𝑠 = 5, 6, 7, 8, 9
are rings composed of 𝑚𝑠 spheres, see also Fig. S4 in the Supplement 1. The blue
dots and red squares in (a) correspond to LG beams with 𝑥-polarized linear (𝜎1 = 𝜎2
= 0) and circular (𝜎1 = 1, 𝜎2 = -1) polarizations, respectively. (c) Optical torques
calculated via two different approaches exerted on the upper and lower plates of a
bilayer structure with 𝑚𝑠 = 4 versus the twist angle 𝜑. The schematic plot of the whole
optical system is shown in the inset. The bilayer structure consists of two identical 30
nm thick square-shaped gold [20] plates separated by a gap of 86 nm, with an area of
255 × 255 nm2. The incident light constitutes of two counter-propagating circularly
polarized Gaussian beams with opposite helicities (NA = 0.6, 𝜆 = 1064 nm, beam
power 0.1 W, and phase shift 𝜙1 = 𝜋/3, 𝜙2 = 𝜋/4). (d) Optical torques exerted on the
upper and lower plates of the bilayer structure contributed by the SAM and OAM.

160

there any special cases for structures with 𝑚𝑠 < 3 that can generate POT? In other words, how161

can POT be achieved for a bilayer structure whose symmetry satisfies Eq. (10)? In Figs. 3(a)162

and 3(b), we present optical torques as functions of the phase difference (Δ𝜙 = 𝜙2 − 𝜙1, 𝜙1 is, for163

example, fixed to 𝜋/3) for systems with the degree of rotational symmetry 𝑚𝑠 = 3 and 𝑚𝑠 = 2,164

Fig. 4. The net optical torque exerted on a bilayer structure composed of identical silver
[44] spheres (R = 100 nm, D = 2R+200 nm, twist angle φ = 30◦) illuminated by counter-
propagating LG beams (numerical aperture NA = 0.6, beam power 0.1 W, λ =532 nm, and
phase shift ϕ1 = π/3, ϕ2 = π/4) versus ms are shown in (a) l1 = 3, l2 = −3 and (b) l1 =
1, l2 =−1, σ1 = −1, σ2 = 1. The structures of ms = 1, 2, 3, 4 use the same structures as
those shown in Figs. 1(b)-1(e), and structures of ms = 5, 6, 7, 8, 9 are rings composed of
ms spheres, see also Fig. S4 in the Supplement 1. The blue dots and red squares in (a)
correspond to LG beams with x-polarized linear (σ1 = σ2 = 0) and circular (σ1 = 1, σ2 =
−1) polarizations, respectively. (c) Optical torques calculated via two different approaches
exerted on the upper and lower plates of a bilayer structure with ms = 4 versus the twist
angle φ. The schematic plot of the whole optical system is shown in the inset. The bilayer
structure consists of two identical 30 nm thick square-shaped gold [20] plates separated
by a gap of 86 nm, with an area of 255 × 255 nm2. The incident light constitutes of two
counter-propagating circularly polarized Gaussian beams with opposite helicities (NA = 0.6,
λ = 1064 nm, beam power 0.1 W, and phase shift ϕ1 = π/3, ϕ2 = π/4). (d) Optical torques
exerted on the upper and lower plates of the bilayer structure contributed by the SAM and
OAM.

aggregate), illuminated by two circularly polarized counter-propagating Gaussian beams with
opposite helicities [see the inset of Fig. 4(c)]. In this case, one has m1 = 1 and m2 = −1, Eq. (10)
indicates the presence of POT for the ms = 4 system. Figure 4(c) indeed exhibits the POT
phenomenon, confirming that POT is only determined by the symmetry governed by the angular
analogue of Floquet’s theorem and is not influenced by other system particulars. Here, the
total electromagnetic fields are obtained by using a commercial finite-element-method package
COMSOL Multiphysics (http://www.comsol.com/). The torques are obtained through direct

https://doi.org/10.6084/m9.figshare.25209362
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Table 1. The degree of rotational symmetry ms for systems producing robust POT
in linearly polarized (LP) or circularly polarized (CP) counter-propagating Gaussian

or Laguerre-Gaussian (LG) beams. Here, N is an integer.

respectively, while arbitrarily choosing the twist angle 𝜑 as 130◦. Figure 3(a) confirms that for165

𝑚𝑠 = 3, Γ𝐿
𝑧 = −Γ𝑈𝑧 holds true regardless of the phase difference Δ𝜙. However, for the system166

with 𝑚𝑠 = 2, Fig. 3(b) shows that Γ𝐿
𝑧 and −Γ𝑈𝑧 are generally different due to the presence of167

the non-zero interference term Γ3,𝑧 . Interestingly, at specific points such as Δ𝜙 = 𝜋/3, 4𝜋/3, the168

net optical torque can also be zero with Γ𝐿
𝑧 = −Γ𝑈𝑧 . Further analysis of individual partial wave169

azimuthal channels in Γ3,𝑧 reveals that contributions from channels ±𝑚 cancel each other at these170

particular phase differences. Figure 3(c) illustrates the contributions from dominant azimuthal171

channels in Γ3,𝑧 when Δ𝜙 = 𝜋/3, corresponding to the red star in Fig. 3(b). The contributions172

from 𝑚 = 1, 3 precisely opposite those from 𝑚 = −1,−3, resulting in a zero net optical torque. It173

is worth noting that both the total incident field of Eq. (1) situated on the bilayer structure planes174

[𝑧 = ±𝐷/2, represented by the red arrows in the inset of Fig. 3(c)] and the bilayer structure itself175

[represented by the black lines in the inset of Fig. 3(c)] exhibit mirror symmetry with respect176

to the 𝑦 direction when projected on the 𝑥𝑦-plane in this situation. Other special points with177

zero net optical torque correspond to “mirror” symmetries along either the 𝑥 or 𝑦 directions.178

Furthermore, we explicitly present the results for Δ𝜙 = 2𝜋/3 [blue stars in Fig. 3(b)] in Fig.179

3(d). Here, the contributions from 𝑚 and −𝑚 no longer cancel each other since the total incident180

field lose “mirror” symmetry along the 𝑥 and 𝑦 directions, as shown in the inset of Fig. 3(d).181

This finding reveals the crucial role of “mirror” symmetry [40] in achieving the POT when the182

resultant condition of the angular Floquet’s theorem [Eq. (10)] is satisfied. It represents a typical183

scenario where the POT occurs “accidentally”. In the following, we will exclude this “accidental”184

case induced by the particular phase difference and focus on the POT that is due to the symmetry185

and immune to the phase.

Table 1. The degree of rotational symmetry 𝑚𝑠 for systems producing robust POT in
linearly polarized (LP) or circularly polarized (CP) counter-propagating Gaussian or
Laguerre-Gaussian (LG) beams. Here, 𝑁 is an integer.

186

Next, we investigate POT on a bilayer structure in the illumination of beams carrying both187

orbital angular momentum (OAM) and spin angular momentum (SAM). The Laguerre-Gaussian188

(LG) beams [40,41] serve best for this purpose. When two linearly polarized counter-propagating189

calculations from Maxwell’s theory (ΓMST) [42,52], as well as by integrating the SAM and OAM
current densities (denoted as ΓSAM and ΓOAM, respectively, see Sec. 4 in Supplement 1 for the
expressions of SAM and OAM current densities [53]). The results obtained through these two
methods agree well. In addition, by comparing Fig. 1(e) and Fig. 4(c), it can be seen that for
structures with rotational symmetry ms = 4, the number of peaks for the optical torque exerted
on each layer differs within one period (the twist angle φ runs from 0◦ to 90◦ ). Strong interlayer
coupling enhances the torque exerted on each layer. The enhanced coupling is related to both
the symmetry and the specific details of the structure. Specifically, the number of maximum
values for optical torque on each layer are determined by the structure’s symmetry, while the
number of minor peaks is also associated with the structure’s details (see Fig. S5 and Fig. S6 in
the Supplement 1 for more details).

Finally, we explore the conversion between SAM and OAM when the POT occurs. The
conversion of SAM to OAM can occur when light is scattered by particles [54,55]. Figures 4(c)
and 4(d) use nearly paraxial (numerical aperture NA = 0.6) circularly polarized Gaussian beams.
In this context, the incident lights can be regarded as carrying only SAM (refer to Fig. S7
in Supplement 1). However, as depicted in Fig. 4(d), both SAM and OAM contribute to the
optical torque in each layer. This indicates that, for each layer, a conversion from spin angular
momentum to orbital angular momentum occurs, and the resulting difference contributes to the
torque experienced by that layer. Specifically, the conversion between SAM and OAM occurs
at individual layer but not on the entire system. As depicted in Figs. 4(c) and 4(d), the lower
plate acquires negative SAM from the field while radiating OAM (acquiring positive OAM),
manifesting itself as a partial conversion from SAM to OAM, with the difference contributing
to ΓL

z . Interestingly, the upper plate does the opposite and completely compensates for the
consequence caused by the lower plate, thus resulting in the individual conservation of SAM and
OAM of the illuminating field while leaving us with a POT in the system.

https://doi.org/10.6084/m9.figshare.25209362
https://doi.org/10.6084/m9.figshare.25209362
https://doi.org/10.6084/m9.figshare.25209362
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3. Conclusion

In conclusion, we identified a new mechanism that enforces zero net optical torque but yet
possesses an interesting mechanical effect of bilayer system twisting. This intriguing behavior,
which we refer to as POT, manifests as the optical torque exerted on each layer of a bilayer
structure being exactly equal in magnitude but opposite in direction during rotation. The
underlying mechanism can be traced to the angular analogue of Floquet’s theorem, which dictates
the possible azimuthal channels of the scattered waves from both layers. When these scattered
waves from both layers are “orthogonal”, meaning they possess different azimuthal numbers and
cannot interfere, the POT is generated. As the POT stems from the system’s inherent symmetry
rather than its specific details, it is believed to be universal and fundamentally different from the
accidental vanishing of the optical torque. Our work enhances the understanding of light-matter
interactions and opens up the new possibility for developing twisted bilayer structure systems
with optical means, a stable bilayer optical motor for DNA unfolding, etc.
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