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A B S T R A C T

Precision measurement of spectral pressure broadening and full−width at half−maximum (FWHM) is essential
for optimizing the performance of atomic clocks. Here, we experimentally demonstrate the 85Rb 5𝑆1∕2 −
5𝐷3∕2 Doppler−free two−photon transition through a virtual level by using a 778 nm single laser. The high
signal−to−noise ratio (SNR) 5𝑆1∕2 (𝐹 = 2) − 5𝐷3∕2 (𝐹 ′′ = 1, 2, 3, 4) monochromatic two−photon transition
fluorescence spectra with 795 nm, 762 nm, and 420 nm are observed clearly simultaneously. Moreover, the
impact of temperature on fluorescence spectral intensity and linewidth was thoroughly investigated. The
pressure broadening of 40 ± 0.54 kHz/mTorr is obtained while the full−width at half−maximum of ∼1.03
MHz is measured for the 85Rb 5𝑆1∕2 (𝐹 = 2) − 5𝐷3∕2 (𝐹 ′′ = 4) transition spectrum. Finally, the effects of the
laser power and the laser polarization combinations on the fluorescence spectra are investigated to obtain the
optimal experimental parameters. This work paves the way for realizing a frequency standard in quantum
communication of the C−band window.
1. Introduction

Precision measurement of atomic spectroscopy has immeasurable
application prospects in the determination of fundamental physical con-
stants [1,2], exploration of physics beyond the standard model [3–9],
and improvement of atomic clocks performance [10–13]. Particularly,
spectral pressure broadening measurement offers invaluable insights for
analyzing systematic effects in atomic clocks, which play indispensable
roles in geodesy [14,15], fundamental physics testing [16–19], and
gravitational−wave detection [20]. One of the most straightforward
and elegant methods for the high−resolution measurement of spectral
pressure broadening relies on Doppler−free two−photon transition of
atoms to eliminate the Doppler effect due to the atomic thermal motion
in gas cell [21–23].

Recently, the 5𝑆1∕2 − 5𝐷3∕2 two−photon transition spectrum of
the rubidium atoms has attracted tremendous attention for metro-
logical application [24,25]. Several experimental platforms are devel-
oped for the rubidium 5𝑆1∕2 − 5𝐷3∕2 two−photon transition spec-
troscopy by two laser beams coupling with the real energy levels [26–
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30]. Additionally, the 5𝑆1∕2 − 5𝐷3∕2 two−photon transition spec-
trum of the rubidium atoms is achieved by a 778 nm single laser
through a virtual energy level [31–33]. The 85Rb 5𝑆1∕2 − 5𝐷3∕2
monochromatic two−photon transition spectrum has the advantages
of superior Doppler−free background [34], relatively narrow natural
linewidth (∼0.97 MHz) [30], and relatively low sensitivity to the
external environment, which provides a frequency standard candidate
for a frequency−doubled 1556 nm laser in the C−band window for
quantum telecommunication [26,35].

The 85Rb 5𝑆1∕2 − 5𝐷3∕2 two−photon transition spectrum is ob-
tained generally by detecting the 420 nm fluorescence generated by
the decay cascade from the 5𝐷3∕2 to the 5𝑆1∕2 states via the 6𝑃 levels.
The absolute transition frequency of rubidium 5𝑆1∕2 − 5𝐷3∕2 is mea-
sured by detecting the 420 nm monochromatic two−photon transition
fluorescence spectra utilizing the continuous wave laser [31] or the
femtosecond optical frequency comb [32]. Furthermore, the 5𝑆1∕2 −
5𝐷3∕2(5∕2) monochromatic two−photon transition fluorescence spectra
are obtained by detecting 762 nm and 776 nm infrared light produced
by 5𝐷 − 5𝑃 spontaneous radiation, which is increased by nearly two
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Fig. 1. (a) Energy−level diagram of 85Rb 5𝑆1∕2 − 5𝐷3∕2 two−photon transition. (b) Schematic view of the experimental setup. HWP, half−wave plate; PBS, polarization beam
splitter; WM, wavelength meter; AOM, acousto−optic modulator; M, high−reflection mirror; BS, beam splitter; QWP, quarter−wave plate; L, lens; FA, interference filter array; PMT,
photomultiplier tube; OSC, oscilloscope.
orders of magnitude compared with 420 nm fluorescence [33]. A
portable clock based on the 5𝑆1∕2 − 5𝐷5∕2 two−photon transition in
rubidium is manufactured by detecting 776 nm fluorescence [13]. To
the best of our knowledge, precision measuring the spectral pressure
broadening of 85Rb 5𝑆1∕2 − 5𝐷3∕2 two−photon transition has not been
explored by simultaneously detecting 795 nm, 762 nm, and 420 nm
fluorescence for compact Rubidium atomic clock analysis.

In this work, the spectral pressure broadening of 85Rb 5𝑆1∕2 −
5𝐷3∕2 transition is studied by multiple fluorescence detection. The high
signal−to−noise ratio (SNR) full fluorescence spectra of 85Rb 5𝑆1∕2
(𝐹 = 2) − 5𝐷3∕2 (𝐹 ′′ = 1, 2, 3, 4) monochromatic two−photon
transition are demonstrated experimentally by using a 778 nm single
laser. The obtained 795 nm, 762 nm, and 420 nm fluorescence in-
tensity ratios are consistent with the theoretical decay transition path
branching ratios of 5𝐷3∕2 − 5𝑃1∕2, 5𝑃1∕2 − 5𝑆1∕2, and 6𝑃1∕2(3∕2) − 5𝑆1∕2,
respectively. Furthermore, the changes of fluorescence spectral inten-
sity and linewidth were studied at different temperatures. The pressure
broadening of 40 ± 0.54 kHz/mTorr and full−width at half−maximum
(FWHM) of ∼1.03 MHz is measured for the 85Rb 5𝑆1∕2 (𝐹 = 2) −
5𝐷3∕2 (𝐹 ′′ = 4) transition spectrum. Finally, the dependency of 5𝑆1∕2
− 5𝐷3∕2 two−photon transition intensity on the laser power and the
polarization combination of the laser beams are explored in detail.
The precision measurement of spectral pressure broadening provides an
excellent experimental platform for building up a frequency standard
in quantum network and optical communication.

2. Experimental setup

The energy level diagram for 85Rb 5𝑆1∕2 − 5𝐷3∕2 two−photon
transition is shown in Fig. 1(a). The 5𝑆1∕2 ground state atoms are
excited via a virtual level to the 5𝐷3∕2 excited state by using a single
778 nm laser, which is labeled by a dotted line in Fig. 1(a). The
fluorescence generated directly from the unstable 5𝐷3∕2 excited state
by spontaneous decay is the 762 nm, 776 nm, 5037 nm, and 5241 nm
with branching ratio of 0.51, 0.11, 0.32, and 0.06, respectively [36].
In this process, the 5𝐷3∕2 state atoms will spontaneously radiate to
the 5𝑆1∕2 ground state via several pathways with 795 nm, 762 nm,
and 420 nm fluorescence emission. The 795 nm fluorescence with the
highest branching ratios of 0.732 is emitted by 5𝑃1∕2 − 5𝑆1∕2, which
comes from the cascade decay paths of 5𝐷3∕2 − 5𝑃1∕2 − 5𝑆1∕2, 5𝐷3∕2
− 6𝑃1∕2 − 4𝐷3∕2 − 5𝑃1∕2 − 5𝑆1∕2, 5𝐷3∕2 − 6𝑃3∕2 − 4𝐷3∕2 − 5𝑃1∕2 −
5𝑆1∕2, 5𝐷3∕2 − 6𝑃1∕2 − 6𝑆1∕2 − 5𝑃1∕2 − 5𝑆1∕2, and 5𝐷3∕2 − 6𝑃3∕2 −
6𝑆1∕2 − 5𝑃1∕2 − 5𝑆1∕2, respectively. The 762 nm fluorescence with
branching ratio of 0.510 arises from the 5𝐷3∕2 − 5𝑃1∕2 decay. The
420 nm fluorescence with branching ratio of 0.105 is generated by
the spontaneously radiate of 5𝐷3∕2 through 6𝑃1∕2 − 5𝑆1∕2 and 6𝑃3∕2
− 5𝑆1∕2 pathways, respectively [36]. The intensity of the fluorescence
radiation is proportional to the population of 5𝐷3∕2 excited state atoms.

Therefore, the 795 nm, 762 nm, and 420 nm fluorescence spectra can
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be measured synchronously to characterize the 85Rb 5𝑆1∕2 − 5𝐷3∕2
two−photon transition intensity.

A schematic diagram of the experimental setup is shown in Fig. 1(b).
The laser source is provided by an external cavity diode laser (Toptica,
DL pro) with the wavelength of 778 nm, which is utilized to excite
the 85Rb 5𝑆1∕2 − 5𝐷3∕2 monochromatic two−photon transition. The
laser beam is split into two components with the combination of a
half wave plate (HWP1) and a polarization beam splitter (PBS1). One
beam is employed to monitor the laser frequency using a wavelength
meter (WS−7, HighFinesse). The other beam is again divided into two
parts by the combination of HWP2 and PBS2 to excite the 85Rb 5𝑆1∕2
− 5𝐷3∕2 transition. The transmitted beam is sent to the acousto−optic
modulator (AOM1) with shifted frequency of 𝑓1 = 80 MHz. The re-
flected beam passes through the AOM2 to achieve the frequency shift
of 𝑓2 = 89.3 MHz. The two beams with a frequency difference of
𝛥𝑓 = 𝑓2 − 𝑓1 = 9.3 MHz are combined through a beam splitter
(BS) for the interaction between laser and atoms. The frequency refer-
ence standard is established using frequency tuning technology. Two
counter−propagating laser beams induced by a high reflector (M5)
are applied to Rb vapor 2.5 cm in diameter and 10 cm in length
to counteract the Doppler broadening. The temperature of the Rb
vapor is measured by a thermocouple thermometer and then accurately
controlled at specific value by a self−feedback system. Two lenses
with a focal length of 20 cm (L1 and L2) are used to ensure that the
waist of the focused laser beams in the middle of the cell is ∼100 μm.
The generated 795 nm, 762 nm, and 420 nm fluorescence is focused
through a lens with a focal length of 3 cm (L3) and passes through
an interference filter array (FA) to resist the background noise caused
by the scattered laser. The FA is composed of three 10 nm bandwidth
bandpass filters with a central wavelength of 800 nm, 760 nm, and
420 nm (Thorlabs FB800−10, FBH760−10, FBH420−10), respectively.
The generated 795 nm, 762 nm, and 420 nm fluorescence signal
are detected synchronously by a side−window photomultiplier tube
(PMT) (Hamamatsu, CR131). Finally, the monochromatic two−photon
transition fluorescence spectra with 795 nm, 762 nm, and 420 nm are
monitored by the oscilloscope (OSC).

3. Results and discussion

Fig. 2 shows the monochromatic two−photon transition fluores-
cence spectra of 85Rb 5𝑆1∕2 (𝐹 = 2) − 5𝐷3∕2 (𝐹 ′′ = 1, 2, 3, 4)
detected by PMT. These spectra are obtained by scanning the frequency
of 778 nm laser, and the linewidths of the spectra are primarily
determined by the linewidth of the laser itself. The fluorescence spectra
are obtained under the condition that the laser power is 50 mW,
the temperature of the Rb vapor is fixed at 150 ◦C, and the two
counter−propagation beams have same linear polarization. The plotted
fluorescence intensities have been corrected for filters transmission and
the PMT response rate of different wavelength. The dots are experi-
mental results, and the black lines are the multi−peak fitting results
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Fig. 2. The fluorescence spectra of 85Rb 5𝑆1∕2 (𝐹 = 2) − 5𝐷3∕2 (𝐹 ′′ = 1, 2, 3, 4) monochromatic two−photon transition with (a) 795 nm, (b) 762 nm, and (c) 420 nm. The dots
represent experimental results, and the black lines are multi−peak fitting curves with a Voigt function.
Fig. 3. The fluorescence intensities of 85Rb 5𝑆1∕2 (𝐹 = 2) − 5𝐷3∕2 (𝐹 ′′ = 4)
monochromatic two−photon transition with 795 nm, 762 nm, and 420 nm at various
Rb vapor temperature. The errors are the standard deviation of three measurements.

with the Voigt profiles. The linear axis in Fig. 2 is designed to more
accurately represent the relationship between fluorescence spectral
intensities at different wavelengths, while still reflecting the spectral
SNR. Each hyperfine splitting of the 5𝐷3∕2 state is well resolved with
the fluorescence spectra of 795 nm, 762 nm, and 420 nm, as shown in
Fig. 2 (a) − (c). Meanwhile, the peak intensity ratios of 85Rb 5𝑆1∕2 (𝐹 =
2) − 5𝐷3∕2 (𝐹 ′′ = 4) hyperfine transition with the 795 nm, 762 nm, and
420 nm fluorescence are 1 : 0.8 : 0.07, respectively, which is a slight
difference with the theoretical decay transition path branching ratios of
1 : 0.7 : 0.14 due to the reabsorption effect of the ground state atoms on
the 795 nm and 420 nm fluorescence [36]. The simultaneous detection
of 85Rb 5𝑆1∕2 − 5𝐷3∕2 two−photon transition full fluorescence spectra
with 795 nm, 762 nm, and 420 nm all reflect the atomic population
of the 5𝐷3∕2 state perfectly. Three experimental parameters, the vapor
temperature, the laser power, and the polarization combination of
the laser beams, play a crucial role in obtaining accurate pressure
broadening and narrow FWHM of the 85Rb 5𝑆1∕2 − 5𝐷3∕2 two−photon
transition spectrum.

The fluorescence intensities of 85Rb 5𝑆1∕2 (𝐹 = 2) − 5𝐷3∕2 (𝐹 ′′ =
4) monochromatic two−photon transition with 795 nm, 762 nm, and
3 
Fig. 4. The dependence of the 85Rb 5𝑆1∕2 (𝐹 = 2) − 5𝐷3∕2 (𝐹 ′′ = 4) two−photon
transition fluorescence spectra linewidths on the pressure of Rb vapor cell. The dots
represent experimental results, and the solid lines are the linear fitting results. The
errors are the standard deviation of three measurements.

420 nm at different vapor temperatures are shown in Fig. 3. The
temperature is increased from 90 to 210 ◦C while the laser power is
kept at 50 mW. It can be observed that the fluorescence intensities
of 795 nm (red dots) and 762 nm (orange dots) increase with the
vapor temperature, which is attributed to the increasing atomic density.
The fluorescence intensity of 795 nm is much higher than that of
762 nm when the temperature is higher than 190 ◦C because of the
collision energy transfer influence [33]. When the vapor temperature
is higher than 200 ◦C, the fluorescence intensities of 795 nm and
762 nm remain constant for the collisional broadening effect [33,37]. In
addition, the 420 nm fluorescence intensity (blue dots) shows the trend
of weak−strong−weak with the increasing vapor temperature due to
the self−absorption effect of 6𝑃 − 5𝑆1∕2 transition [38]. Meanwhile, the
420 nm fluorescence intensity reaches the highest value when the vapor
temperature is 140 ◦C, which is smaller than the 795 nm and 762 nm
fluorescence intensity at the same temperature. This is because the
420 nm fluorescence has the smallest decay transition path branching
ratios in the 85Rb 5𝑆1∕2 − 5𝐷3∕2 monochromatic two−photon transition
process.
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The pressure broadening reveals the yet unknown dependence of
broadening coefficients and the vapor temperature for the 5𝐷3∕2 hy-
perfine level. Meanwhile, the spectral FWHM can be calibrated by
measuring pressure broadening, which is crucial to the frequency stan-
dard based on 85Rb 5𝑆1∕2 −5𝐷3∕2 two–photon transitions. Fig. 4 shows
the linewidths (the Lorentzian part of the Voigt fit) of 85Rb 5𝑆1∕2 (𝐹 =
2) − 5𝐷3∕2 (𝐹 ′′ = 4) two−photon transition fluorescence spectra with
795 nm, 762 nm, and 420 nm as a function of the Rb vapor pressure
(𝑝). The temperature of the Rb vapor is adjusted from 100 to 210
◦C while the power of the laser is kept at 50 mW. The expression of
log10 𝑝 = 2.881+4.312−4040∕𝑇 [39] is used to convert temperature (𝑇 )
to 85Rb vapor pressure (𝑝). The linewidths of the fluorescence spectra
with 795 nm, 762 nm, and 420 nm increase linearly with the increasing
vapor pressure. The difference of the fluorescence spectra linewidths
comes from the different spectral SNR. The linear fitting with a slope
of 40 ± 0.54 kHz/mTorr and zero pressure−intercept of 1.03 ± 0.1 MHz
are consistent with the experimental results. Therefore, the FWHM of
the 85Rb 5𝑆1∕2−5𝐷3∕2 transition spectrum with ∼1.03 MHz is obtained,
which is slightly higher than the natural linewidth of the 5𝐷3∕2 state
(∼0.97 MHz) because the contributions of transit−time broadening, the
laser linewidth, and residual Doppler broadening arising from laser
beams misalignment.

The two−photon transition peak intensity from the ground state
|5𝑆1∕2𝐹 ⟩ to the excited state |5𝐷3∕2𝐹 ′′

⟩ can be characterized by [40,
41]:

𝑃 (5𝑆1∕2𝐹 , 5𝐷3∕2𝐹
′′) ∝
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(1)

where 𝐼1 and 𝐼2 are the intensities of two counter−propagating beams
that used to excite the two−photon process, 𝐹 , 𝐹 ′, and 𝐹 ′′ are total
atomic angular momentum quantum numbers, 𝜔1 and 𝜔2 are the two
photon frequencies, 𝑘1 and 𝑘2 are the wave vectors, 𝑣 is the atomic
velocity, 𝑒1 and 𝑒2 are the unit vector along the quantization axis
direction for the two laser beams, 𝑑 is the electric dipole operator, 𝛾𝑛𝐿
is the homogeneous linewidth of the |𝑛𝐿𝐽 ⟩ state, and 𝑀𝐹 , 𝑀 ′

𝐹 , and 𝑀 ′′
𝐹

are the magnetic quantum numbers.
The fluorescence intensities of 85Rb 5𝑆1∕2 (𝐹 = 2) − 5𝐷3∕2 (𝐹 ′′ =

4) monochromatic two−photon transition with 795 nm, 762 nm, and
420 nm are characterized by varying the laser power, which is shown in
Fig. 5. The experiment is conducted with the same condition of Fig. 2,
except that the laser power increases from 30 to 70 mW. It is clearly
shown that the fluorescence intensity increases with an increasing laser
power and exhibits a quadratic relationship, which is depicted in the
inset of Fig. 5. For the monochromatic two−photon transition with two
counter−propagating laser beams, the laser intensity of two beams is
the same (𝐼1 = 𝐼2), therefore, the two−photon transition intensity has
a linear relationship with the squared laser power from formula (1).
In addition, the fluorescence intensity ratios of 795 nm, 762 nm, and
420 nm with 1 : 0.8 : 0.07 are consistent with the 85Rb 5𝑆1∕2 (𝐹 = 2) −
5𝐷3∕2 (𝐹 ′′ = 4) hyperfine transition peak intensity ratios of Fig. 2, indi-
cating that the reabsorption effect of the 5𝑆1∕2 ground state atoms does
not depend on the laser power. Although the fluorescence intensities of
795 nm, 762 nm, and 420 nm are different under the constant power,
the same trend strongly verifies the proportional relationship between
the fluorescence intensity and the square of laser power.

The fluorescence intensity of 85Rb 5𝑆1∕2 − 5𝐷3∕2 two−photon tran-
sition also depends on the polarization combination of the laser beams.
The Zeeman sublevels transition of 𝛥𝑚𝐹 = 0, 1, −1 are driven by
the 𝜋 linearly polarized, 𝜎+ right−handed circularly polarized, and 𝜎−
4 
Fig. 5. The fluorescence intensities of 85Rb 5𝑆1∕2 (𝐹 = 2) − 5𝐷3∕2 (𝐹 ′′ = 4)
monochromatic two−photon transition with 795 nm, 762 nm, and 420 nm as a function
of laser power. The inset is the relationship between fluorescence intensity and the
squared total laser power (𝑃 2). The dots represent experimental results, and the solid
lines are the theoretical fitting results. The errors are the standard deviation of three
measurements.

Fig. 6. The 795 nm, 762 nm, and 420 nm fluorescence intensities of 85Rb 5𝑆1∕2 (𝐹 = 2)
− 5𝐷3∕2 (𝐹 ′′ = 4) monochromatic two−photon transition with different polarization
combination of the laser beams. The dots represent experimental results, and the solid
lines refer to fitting by the sine curve. The errors are the standard deviation of three
measurements.

left−handed circularly polarized beams, respectively [42]. Fig. 6 illus-
trates the 795 nm, 762 nm, and 420 nm fluorescence intensities with
different polarization angles of the reflected beam. Two quarter−wave
plates (QWP1 and QWP2) are inserted into the experimental setup to
control the polarization combination of the laser beams. The QWP1 is
fixed in the path of the laser beam before the Rb vapor cell to obtain
a circularly polarized beam. The QWP2 is located between the vapor
cell and the M5 to control the polarization of the reflected beam from
0◦ to 180◦ with 10◦ intervals. The other experimental parameters are
the same as the Fig. 2. It can be found that the 795 nm, 762 nm, and
420 nm fluorescence intensities all reach the minimum value when
the counter−propagating beams are oppositely circularly polarization
combination (QWP2 = 0◦, 90◦, and 180◦) while the fluorescence intensi-
ties reach the maximum value with the same polarization combination
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(QWP2 = 45◦ and 135◦). These experimental results are consistent with
the theoretical prediction that the polarization combination of 𝜎+ −
− has lower probability and the polarization combination of 𝜎+ −
+ causes the highest transition probability [43,44]. Meanwhile, the
luorescence intensity ratios of 795 nm, 762 nm, and 420 nm with
ifferent laser polarization combinations agree well with the 85Rb 5𝑆1∕2
𝐹 = 2) − 5𝐷3∕2 (𝐹 ′′ = 4) hyperfine transition peak intensity ratios
f Fig. 2. Similarly, the relationship between two−photon transition
ntensity and laser polarization combinations is verified strongly by the
ull fluorescence spectra with 795 nm, 762 nm, and 420 nm.

. Conclusion

In summary, the spectral pressure broadening of 85Rb 5𝑆1∕2 −
𝐷3∕2 transition is investigated by multiple fluorescence detection.
he high SNR full fluorescence spectra of 85Rb 5𝑆1∕2 (𝐹 = 2) −
𝐷3∕2 (𝐹 ′′ = 1, 2, 3, 4) monochromatic two−photon transition are
emonstrated experimentally by using a 778 nm single laser. The
btained 795 nm, 762 nm, and 420 nm fluorescence intensity ratios are
onsistent with the theoretical decay transition path branching ratios
f 5𝐷3∕2 − 5𝑃1∕2, 5𝑃1∕2 − 5𝑆1∕2, and 6𝑃1∕2(3∕2) − 5𝑆1∕2, respectively.
he dependence of fluorescence intensities on the vapor temperature

s investigated, which is directly related to the atomic density and
apor pressure. Then, the pressure broadening of 40 ± 0.54 kHz/mTorr
s obtained while the full−width at half−maximum of ∼1.03 MHz is
easured for the 85Rb 5𝑆1∕2 (𝐹 = 2) − 5𝐷3∕2 (𝐹 ′′ = 4) two−photon

transition spectrum. A quadratic relationship between the laser power
and fluorescence intensities with 795 nm, 762 nm, and 420 nm is
observed, which is agree well with the theoretical prediction. The rela-
tionship between fluorescence intensities and laser beams polarization
combinations obviously depends on the atomic transition selection rule.
The infrared fluorescence intensity detection with high decay transi-
tion path branching ratios is an attractive alternative for achieving
compact optical clocks based on 85Rb 5𝑆1∕2 − 5𝐷3∕2 monochromatic
two−photon transition.
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