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The nonlinear Thouless pumping is an exciting frontier of topological physics. While recent works have
revealed the quantized motion of solitons in Thouless pumps, the interplay between the topology, nonlinearity,
and disorder remains largely unexplored. Here, we investigate the nonlinear Thouless pumping of solitons in
the presence of an impurity in the context of a Bose–Einstein condensate. Using both the Gross-Pitaevskii
equation and Lagrange variational approach, we analyze the interaction between a moving soliton and an
impurity. Without the pump, the soliton can pass through when the impurity strength is weak; however, it can get
trapped when the impurity strength increases. In contrast, we find Thouless pump soliton in Thouless pumps can
transit through also for strong impurity strength, and its motion is topologically quantized. Our result explicitly
showcases the robustness of topological soliton pumping against microscopic imperfections, and opens a new
perspective in the information processing with solitons.
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I. INTRODUCTION

Central to understanding quantized topological transport is
the concept of Thouless pumping [1–4]. There, a quantum
particle acted on by a periodic potential that varies adiabat-
ically and periodically in time shows a quantized motion;
the quantized displacement, dictated by the Chern number of
the underlying band structure in the momentum-time space,
is stable against disorder [4]. The experimental implementa-
tion of Thouless pumps and the observations of topologically
quantized transport have been achieved in a wide variety of
systems, including ultracold atoms [5–11], photonics [12–16],
and spin systems [17,18]. Interestingly, these synthetic topo-
logical systems can operate even beyond the linear regime,
i.e., in the presence of nonlinearities that arise from the
Kerr effect in optical platforms [19–23] or the interparticle
interactions in atomic setups [24–26]. At present, exploring
nonlinear topological pumping has attracted significant inter-
ests and experimental efforts.

A paradigm of the nonlinear Thouless pumping concerns
the topological transport of nonlinear excitations, known as
solitons [27–33]. It has been shown that for weak non-
linearity, the motion of the soliton can be topologically
quantized, where the quantized displacement is directly re-
lated to the topology of the underlying band structures
[6–8,10–13,15,17,34,35]; whereas, the quantization breaks
down in the strong nonlinearity limit [3,5,20,28,29,36–49].
More recent studies have shown that the nonlinearity can fun-
damentally modify the adiabatic dynamics and thus the Berry
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connection [33]. So far, however, exploring the interplay of
nonlinear excitations, topology, and disorder remains largely
unchartered territory.

In this work, we explore the soliton transport in nonlinear
Thouless pumps in the presence of an impurity, based on a
quasi-one-dimensional (quasi-1D) Bose-Einstein condensate
(BEC). We first numerically simulate the motion of the soliton
through the impurity using the Gross-Pitaevskii (GP) equa-
tion [50–52]. Further, we analytically study the interaction
between the soliton and the impurity using the Lagrangian
variational approach. Without the pumps, the fate of the soli-
ton relies crucially on the effective mass of the impurity: For
weak impurity strength, the soliton can easily pass through,
but when the impurity strength increases, the soliton can
get trapped. However, in the presence of Thouless pumps,
we find the soliton can transit through the impurity, and
its motion becomes topologically quantized. Such topology-
enhanced soliton transport through the impurity provides
insights into the interplay between nonlinearity, topology, and
disorder, and explicitly elucidates the stability of the topologi-
cal nonlinear pumping against local imperfections. Our result
may enable possibilities in the information processing with
solitons.

The paper is organized as follows. In Sec. II, we present
detailed descriptions of our model system. In Sec. III, by
numerically solving GP equation, we investigate the nonlinear
Thouless pumping of solitons in the presence of an impurity.
In Sec. IV we analytically derive the equations of motions
for the soliton using Lagrangian variational approach to gain
more understandings of its interaction with the soliton. Both
the numerical and analytical results explicitly demonstrate the
robustness of topological soliton pumping against imperfec-
tions. In Sec. VI we summarize our work.
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II. MODEL SYSTEM

We consider a 3D BEC with an attractive interatomic
interaction in the following trap geometry [5,6]: in the x direc-
tion, the BEC is trapped in an optical superlattice VOSL(x, t )
and an impurity potential Vimp, while in the y and z direc-
tions, the BEC is tightly confined in the harmonic trap with
the large trap frequency ω⊥ such that the atomic motions
in these directions are affectively frozen. At the mean-field
level, the considered BEC can be described by the conden-
sate wave function �(x, y, z) = ψ (x)φ(y, z) with φ(y, z) =
1/(

√
πa⊥)e−[y2+z2]/(2a2

⊥ ) and a⊥ = √
h̄/(mω⊥). Averaging out

the transverse degrees of freedom results in an effective quasi-
1D BEC described by the following GP equation [53,54], i.e.,

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
+ g|ψ |2ψ + [Vimp(x) + VOSL(x, t )]ψ.

(1)

Here the m is the atomic mass, and g = 2h̄2as/(ma2
⊥) is the

confinement-modified coupling constant, where as < 0 is the
negative s-wave scattering length.

In Eq. (1), we consider the time-dependent superlattice
potential VOSL/ER = −Vs cos2( 2πx

d ) − Vl cos2( πx
d − �t ), with

ER = h̄2π2/(2md2). It consists of a primary lattice with the
spatial period d/2 and lattice strength Vs, and a superim-
posed second lattice with the period d and the strength Vl ;
the relative phase between the two lattices is �t . Such a
time-dependent potential has been experimentally realized in
quantum gases to implement Thouless pumps [6].

Moreover, we consider the impurity potential in Eq. (1) as
Vimp/ER = −V0δ(x), corresponding to an impurity centered at
x = 0 with the impurity strength V0. Such an impurity trap has
been experimentally realized using bichromatic fields [55,56],
or dark-state optical potentials [57,58].

For subsequent analysis, we will rescale GP equation (1)
into the dimensionless form via x → x/d , t → 2ERt/π2h̄,
ψ → ψ

√
|g|π2/2ER, γ = V0π

2/2d , Vs(l ) = Vs(l )π
2/2, and

ν = �h̄π2/2ER. The resulting dimensionless GP equa-
tion reads

i
∂

∂t
ψ = −1

2

∂2

∂x2
ψ − |ψ |2ψ − γ δ(x)ψ + VOSL(x, t )ψ, (2)

with the normalization condition
∫ |ψ |2dx = N . The dimen-

sionless pumping potential is explicitly given by

VOSL(x, t ) = −Vs cos2(2πx) − Vl cos2(πx − νt ), (3)

which is periodic in time with the periodicity T = π/ν. In
addition, the γ in Eq. (2) reflects the strength of the defect,
and can be interpreted as the effective mass of the impurity
[54].

III. SOLITONIC THOULESS PUMPING THROUGH AN
IMPURITY: NUMERICAL STUDY

In this section, we numerically study the soliton motion
based on the GP equation (2) under the initial excitation
condition ψ (x, 0) = Ae−(x−x0 )2/l2

eikx [29,54], where k and x0

denote the initial momentum and the center-of-mass posi-
tion, respectively; l is the initial width of the envelope and
A is the peak amplitude. The ratio A2/Vmin with Vmin =

min(Vs,Vl ) effectively characterizes the strength of nonlinear-
ity in the nonlinear Thouless pump. We will specialize to the
regime of sufficiently strong nonlinearity, where stable soliton
forms.

Before proceeding, we briefly review three familiar cases
studied before. (i) In the absence of both impurity (γ = 0) and
Thouless pump (VOSL = 0), the quasi-1D BEC described by
GP Eq. (2) is known to support solitons as the nonlinear exci-
tations. (ii) Without impurity (γ = 0), Eq. (2) with VOSL �= 0
has been used to study the nonlinear Thouless pumping of
solitons such as in Ref. [29,30]. It is shown that for A2/Vmin

below some critical value, i.e., in the pumped regime, the soli-
ton undergoes topologically quantized transport, whereas for
A2/Vmin above the critical value, i.e., in the trapped regime, the
soliton is dynamically localized near its initial position. (iii)
Equation (2) with γ �= 0 and VOSL = 0 has been used to study
the interaction between a moving soliton with an impurity. As
shown in Refs. [53,54], the behavior of the soliton crucially
depends on the impurity strength γ . Specifically, the soliton
can only move through for the weak γ , but becomes to be
trapped when γ increases.

In this work, we are interested in the motion of the
soliton when both the pump and the impurity are present,
i.e., VOSL �= 0, γ �= 0. To this end, henceforth we focus on
the A2/Vmin in the pumped regime where solitons undergo
topological transport in the defect-free case. We numerically
solve the GP Eq. (2) by the split-step fast Fourier algo-
rithm [59]; see Appendix A for technical details. In the
numerical simulation, we approximate the δ potential by a suf-
ficiently narrow Gaussian function according to the identity
−γ δ(x) = − limσ→0

γ√
2πσ

e−x2/(2σ 2 ). For concreteness, we as-
sume a pump with Vs = Vl = 25, whose lowest band of the
underlying band structure has the Chern number C = 1 [4].
(We refer to Appendix B for detailed calculations of the Chern
numbers of the underlying band structures associated with
the linear Thouless pump.) In addition, we choose the initial
soliton width l < 0.5 (i.e., smaller than the half spatial peri-
odicity), so that the soliton state mainly occupies the lowest
band when projecting onto the underlying linear Bloch states.
Finally, the initial soliton momentum and the pump rate are
chosen as k = 0.1 and ν = 0.1, respectively, to ensure the adi-
abatic condition required by Thouless pump. Our numerical
calculations reproduce the known results described earlier in
(i)–(iii). The soliton motion under different parameters will be
shown in Sec. V.

Our numerical results are shown in Figs. 1(a) and 1(b) for
weak γ and in Figs. 2(a) and 2(b) for large γ , respectively,
where we compare the soliton behavior in the absence and
presence of the topological pump. Consider first the regime of
weak impurity [Fig. 1(a)] without the pump. We see that the
soliton directly tunnels through the weak impurity potential
centered at x = 0, where the collision within the impurity only
causes a small deviation of the soliton from its original path.
In the presence of the topological pump with Vs = Vl = 25, as
shown in Fig. 1(b), the soliton not only transmits through the
impurity, but also the solitonic displacement becomes quan-
tized to the underlying Chern number of the pump, despite
the presence of the impurity.

In comparison, Figs. 2(a) and 2(b) illustrate the soli-
ton motion for large impurity mass. Without the pump, as
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FIG. 1. Soliton transport for weak impurity strength, without and
with nonlinear Thouless pumps. In (a) and (c), the pump is absent,
where Vs = Vl = 0. In (b) and (d), the pump is present, with Vs =
Vl = 25 and the periodicity T . In (a) and (b), the solitonic motion in
space (x) and time (t/T ) is simulated via the numerical solutions of
the dimensionless GP Eq. (2). The impurity is numerically modeled
as −γ δ(x) ≈ − γ√

2πσ
exp(−x2/(2σ 2)), with γ = 0.1 and σ = 0.002.

and the initial state ψ (x, 0) = Ae−(x−x0 )2/l2
eikx , where x0 = −3, l =

0.4, k = 0.1, ν = 0.1, and A2 = 15. The color bar denotes the mag-
nitude of |ψ |2. The blue line in (a) denotes the center of the impurity
potential. The green line in (b) denotes the pumping potential at
t = 0. (c) and (d) present the results for the center-of-mass posi-
tion of the soliton based on the Euler-Lagrange Eqs. (8)–(13) with
scaled parameters γ̃ = γ /A = 0.026, and z(0)/A = −3, η(0) = 1,
κ (0) = 0.0258, α(0) = β(0) = a(0) = 0.

illustrated in Fig. 2(a), we see that the soliton gets trapped in
the impurity potential, as opposed to the case of weak impurity
in Fig. 1(a). Interestingly, after applying Thouless pump with
Vs = Vl = 25 in Eq. (3), the soliton is able to pass through
the impurity instead of being localized by it [see Fig. 2(b)].
Moreover, the solitonic displacement in a period becomes
quantized to unity. This phenomena contrasts strongly with
the pump-free counterpart, and showcases the stability
of the topological nonlinear pumping against the static
disorder.

IV. SOLITONIC THOULESS PUMPING THROUGH AN
IMPURITY: VARIATIONAL APPROACH

To further establish our results and gain understandings
how the interaction between the soliton and the impurity is
affected by the Thouless pump, in this section we develop an
analytical study of the soliton motion using the Lagrangian
variational approach.

We consider the renormalized wave function ψ (x, t ) =
Aφ(X, τ )ei(Vs+Vl )t/2 with the new variables τ = A2t and X =
Ax [29,30], and recast Eq. (2) into the following form:

iφτ = − 1
2φXX − |φ|2φ − γ̃ δ(X )φ + ṼOSL(X, τ )φ. (4)
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FIG. 2. Soliton transport for strong impurity strength, with-
out and with nonlinear Thouless pumps. In (a) and (c), the
pump is absent, where Vs = Vl = 0. In (b) and (d), the pump is
present, with Vs = Vl = 25. In (a) and (b), the solitonic motion
is simulated via the numerical solutions of the dimensionless GP
equation (2) where the impurity is approximated by −γ δ(x) ≈
− γ√

2πσ
exp[−x2/(2σ 2)] with γ = 0.53 and σ = 0.002. The ini-

tial condition is ψ (x, 0) = Ae−(x−x0 )2/l2
eikx , where x0 = −3, l =

0.4, k = 0.1, ν = 0.1, and A2 = 15. (c) and (d) present the re-
sults for the center-of-mass position of the soliton based on the
Euler-Lagrange equation Eqs. (8)–(13) with scaled parameters γ̃ =
0.137 and z(0)/A = −3, η(0) = 1, κ (0) = 0.0258, α(0) = β(0) =
a(0) = 0.

Here, we have used the notations φτ = ∂φ/∂τ , φXX =
∂2φ/∂X 2, and the scaled parameters ṼOSL(X, τ ) =
−Ṽs cos(4πX/A) − Ṽl cos(2πX/A − 2ντ/A2) with Ṽs = Vs/

(2A2) and Ṽl = Vl/(2A2), and γ̃ = γ /A.
As the benchmark, we recall that without the pump

(ṼOSL = 0), there exist two special cases where known solu-
tions exist. (i) Without both the nonlinearity and the pump,
Eq. (4) is reduced to the familiar linear Schrödinger equa-
tion with the δ potential, whose solution is a bound state
localized in the defect potential (see, e.g., Ref. [53,54] and the
references therein), i.e., φim(X ) = √

γ̃ e−γ̃ |X | with the local-
ization length 1/γ̃ . (ii) Without the impurity (γ̃ = 0) and the
pump, Eq. (4) supports moving solitons of the form φsoliton =
ηsech[η(X − κτ )] exp [i(η2 − κ2)τ/2 + iκX ] [53], with the
amplitude η, width 1/η, and momentum κ . In the presence of
the Thouless pump [ṼOSL(X, τ ) �= 0], neither the bound state
φim nor the soliton φsoliton stands as the general solutions of
Eq. (4). To seek the solutions in this case, we use the La-
grangian variational approach along the line of Refs. [53,54].
We assume a trial wave function, which is the combination of
the moving soliton and the impurity-induced bound state, i.e.,

φ(X, τ ) = [ηsech(ηX − z)eiκX + a
√

γ̃ e−γ̃ |X |+iα]eiβ, (5)

where η(τ ), z(τ ), κ (τ ), a(τ ), α(τ ), and β(τ ) are the varia-
tional parameters to be determined below. Specifically, η(τ )
and z(τ ) are the amplitude and the center-of-mass position
of the soliton, respectively, κ (τ ) is the wave number of the
soliton, a(τ ) is the amplitude of the bound-state component,
α(τ ) is the relative phase between the soliton and the bound

013305-3



CAO, JIA, HU, AND LIANG PHYSICAL REVIEW A 110, 013305 (2024)

state, and β(τ ) is the global phase of the trial function. The
key assumption underlying the ansatz (5) is that the func-
tional forms of the soliton and the impurity-induced bound
state are preserved in the presence of the Thouless pump-
ing, but the corresponding parameters become slowly time
dependent.

With Eq. (5), the Lagrangian of L corresponding to the GP
Eq. (4) can be derived following standard procedures [53,54].
The Lagrangian is written as

L = i

2

∫ +∞

−∞

(
φ� ∂φ

∂τ
− φ

∂φ�

∂τ

)
dX − E , (6)

where we have

E = 1

2

∫ +∞

−∞

∣∣∣∣ ∂φ

∂X

∣∣∣∣
2

dX − 1

2

∫ +∞

−∞
|φ|4dX

−
∫ +∞

−∞
γ̃ δ(X )|φ|2dX −

∫ +∞

−∞
Ṽs cos

(
4πX

A

)
|φ|2dX

−
∫ +∞

−∞
Ṽl cos

(
2πX

A
− 2ντ

A2

)
|φ|2dX.

Inserting ansatz (5) into Eq. (6), and after some tedious calcu-
lations as detailed in Appendix C, the Lagrangian is derived
as

L = −2η
∂β

dτ
− 2z

∂κ

∂τ
− κ2η + 1

3
η3 + 2π2

[
2Ṽs

A
cos

(
4πz

ηA

)
csch

(
2π2

ηA

)
+ Ṽl

A
cos

(
2πAz − 2ηντ

ηA2

)
csch

(
π2

ηA

)]

+ γ̃ η2sech2(z) + 2(aγ̃ 3/2)ηsech(z) cos(α) − a2

(
∂β

∂τ
+ ∂α

∂τ

)
+ a2γ̃ 2

2
+ a2γ̃ 2A2Ṽs

4π2 + A2γ̃ 2
+ a2γ̃ 2A2Ṽl

π2 + A2γ̃ 2
cos

(
2ντ

A2

)
+ 1

4
a4γ̃ .

(7)

The first line of Lagrangian (7) does not depend on impurity parameters, corresponding to the contribution from the pumped
soliton in the absence of impurity. The second line involves the corrections due to impurities up to the fourth orders of a
associated with the weight of bound-state component in Eq. (5) [53]. In particular, the terms in order of O(a1) come from the
mutual interaction between the bound state and the soliton; the terms in order of O(a2) describe the impurity’s energy in the
presence of the pumping potential; the terms in order of O(a4) arise from the self-interaction of the bound state.

Thus the Euler-Lagrange equations for the variational parameters are given by ∂L
∂qi

− d
dτ

( ∂L
∂ q̇i

) = 0 with qi = η, z, κ, a, α, β.
After some tedious but straightforward calculations, we obtain Eqs. (8)–(13) below

d

dτ
z = ηκ, (8)

d

dτ
a = ηγ̃ 3/2sech(z) sin(α), (9)

d

dτ
η = −aηγ̃ 3/2sech(z) sin(α), (10)

d

dτ
κ = −8π3Ṽs

A2η
csch

(
2π2

Aη

)
sin

(
4πz

Aη

)
− 2π3Ṽl

A2η
csch

(
π2

Aη

)
sin

(
2Aπz − 2ντη

A2η

)
− γ̃ η2sech2(z)tanh(z)

− aηγ̃ 3/2 cos(α)sech(z)tanh(z), (11)

d

dτ
α = 1

a
cos(α)sech(z)ηγ̃ 3/2 + 1

2
a2γ̃ − d

dτ
β + γ̃ 2

2
+ A2Ṽl γ̃

2

π2 + A2γ̃ 2
cos

(
2ντ

A2

)
+ A2Ṽsγ̃

2

4π2 + A2γ̃ 2
, (12)

d

dτ
β = 4π4Ṽs

A2η2
cos

(
4πz

Aη

)
coth

(
2π2

Aη

)
csch

(
2π2

Aη

)
+ 8π3Ṽs

A2η2
csch

(
2π2

Aη

)
sin

(
4πz

Aη

)
z

+ π4Ṽl

A2η2
cos

(
2Aπz − 2τνη

A2η

)
coth

(
π2

Aη

)
csch

(
π2

Aη

)
+ 2π3Ṽl

A2η2
csch

(
π2

Aη

)
sin

(
2Aπz − 2τνη

A2η

)
z

+ γ̃ sech2(z)η + 1

2
η2 − κ2

2
+ aγ̃ 3/2 cos(α)sech(z). (13)

Equation (8), along with Eqs. (9)–(13), provides the key
analytical result of this work; it shows how the motion of a
soliton against an impurity is affected by the Thouless pump.
Note that without the pump (i.e., Ṽs = Ṽl = 0), the above
equations recover the corresponding results of Ref. [53]. As
shown in Eq. (8), the displacement of the soliton is strongly
affected by the time-dependent superposition amplitudes of

the soliton component η(τ ) and the bound-state component
a(τ ) in Eq. (10).

To solve the set of Euler-Lagrange equations in Eqs. (8)–
(13) for the variational parameters, without loss of generality,
we consider the following initial conditions. At τ = 0, the
position of the bright soliton is centered at z(0)/A = −3, far
away from the impurity; the initial amplitude and velocity of
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the soliton are chosen as η = 1 and κ = 0.0258, respectively;
for other parameters, we choose a(0) = α(0) = β(0) = 0.

To double check whether our derivations reproduce the
known results in Ref. [53] in the absence of Thouless pumps,
at first, we take Ṽs = 0 and Ṽl = 0 in Eqs. (8)–(13). Indeed, as
illustrated in Fig. 1(c) for the weak impurity with γ̃ = 0.026,
the soliton directly transits through the impurity potential
without being localized. This can be intuitively understood by
noting that for small γ̃ , the bound state has a much smaller
energy than the soliton, resulting in a small admixture of the
localized bound state in Eq. (5). Therefore, the moving soliton
is only slightly perturbed by the impurity. With the increase
of γ̃ , however, the bound state gains more weight in the wave
function described by Eq. (5). For γ̃ = 0.137 as in Fig. 2(c),
we see that the initially moving soliton becomes localized
around the impurity, consistent with previous findings.

Next, we turn on the Thouless pump with Ṽs = Ṽl = 0.83
(corresponding to Vs = Vl = 25 and A2 = 15), and again solve
Eqs. (8)–(13). The result for the weak impurity is shown in
Fig. 1(d). We see that the soliton in the Thouless pump passes
through a weak impurity as if the impurity does not exist,
and its mean displacement in a period becomes quantized.
Remarkably, as shown in Fig. 2(d), the nonlinear topological
pump enables the soliton to pass through even for strong im-
purity strength, contrary to the pump-free case, and the motion
is quantized. This provides a direct evidence that the quan-
tized transport of a quantum particle in nonlinear topological
Thouless pump is robust against the local imperfections.

V. DISCUSSION

In previous sections, we have illustrated the robustness
of the nonlinear Thouless pumping of solitons against an δ

impurity when A2 = 15 and Vs = Vl = 25. In this section, we
extend our discussions to general conditions of the impurity,
the soliton, and the lattice, respectively.

As mentioned earlier, numerically, the δ impurity is
approximated by a narrow Gaussian function −γ δ(x) =
− limσ→0

γ√
2πσ

e−x2/(2σ 2 ). For instance, in Fig. 2(b) with γ =
0.53, a sufficiently small impurity width σ = 0.002 was cho-
sen, so that without both the pump and nonlinearity the
numerical solution of the system’s ground state agrees per-
fectly with the exact solution of the bound state

√
γ e−γ |x|.

In this limit, we see that the soliton, arrested by the impurity
in free space, can undergo a quantized transport through the
impurity. Increasing σ away from the δ-function limit, as
in a more realistic defect with finite width, the soliton in
free space remains trappable by the impurity with the width
σ � l smaller than the soliton width l , as shown in Fig. 3(a)
for σ = 0.02 and l = 0.4. However, for σ � l , the soliton
can transmit through the impurity even without the pump
[Fig. 3(c)]. In both cases, adding Thouless pump results in
topologically quantized soliton motion through the impurity
[Figs. 3(b) and 3(d)]; the average displacement is quantized to
the Chern number of the lowest band.

Changing the lattice strength Vs and Vl results in modifica-
tions of the underlying band structures. Figure 4(a) considers
a decreased lattice strength, Vs = Vl = 10, while other param-
eters are the same as in Fig. 2(b). Although the energy gap
becomes smaller, the topology of the relevant bands remains
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FIG. 3. Numerical simulations of soliton transport in the pres-
ence of a Gaussian impurity − γ√

2πσ
e−x2/(2σ 2 ) with γ = 0.53, for the

finite width σ = 0.02 in (a) and (b), and σ = 0.28 in (c) and (d).
Numerical computations are performed based on the GP Eq. (2), in
free space (Vs = Vl = 0) in (a) and (c), and with Thouless pump
(Vs = Vl = 25) in (b) and (d). Other parameters are the same as
Fig. 2(b).

the same as for Vs = Vl = 25. Thus, the soliton is expected to
display similar behavior as in Fig. 2(b), as seen in Fig. 4(c).
Figure 4(b) shows the band structure associated with the linear
pump with Vs = 25 and Vl = 50, where the Chern number of
the lowest band remains to be C = 1, but the Chern number
of the second band is different from Fig. 4(a). Since the given
soliton mainly occupies the lowest band, still, similar topo-
logical soliton transmission across the impurity is observed
[Fig. 4(d)], where the average displacement is predicted by
the Chern number C = 1 of the lowest band.
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FIG. 4. Numerical simulations of soliton transport in the pres-
ence of strong impurity potential, for Thouless pump with Vs = Vl =
10 in (a) and (c), and Vs = 25 and Vl = 50 in (b) and (d). (a) and
(b) show the corresponding band structures associated with the linear
pump. The lowest two bands have Chern numbers (a) C = {1, −1},
and (b) C = {1, 1}. (c) and (d) show the corresponding soliton mo-
tion. Other parameters are same as Fig. 2(b).

013305-5



CAO, JIA, HU, AND LIANG PHYSICAL REVIEW A 110, 013305 (2024)

0

20

40

60

0

1

2

3

4

5

-2 -1 0 1 2-3
0

1

2

3

4

5

0

50

100

150

-4 -3 -2 -1 0 1

FIG. 5. Numerical simulations of soliton transport for strong im-
purity strength when (a) A2 = 30 and (b) A2 = 55. Other parameters
are the same as in Fig. 2(b).

The topological transmission through the impurity is gen-
erally observed when the strength of the nonlinearity is in the
pumped regime [Fig. 5(a)]. For sufficiently strong nonlinear-
ity above the critical value, the soliton becomes to be trapped
near its initial position away from the impurity, as shown in
Fig. 5(b). Overall, our above results suggest that, as same as
the linear case, the nonlinear topological pump is immune to
microscopic imperfections.

VI. CONCLUSION

In this work, we theoretically investigate the nonlinear
Thouless pumping of a soliton in the presence of an impurity
based on the system of a quasi-1D BEC. Using both the GP
equation and the Lagrangian variational method, we compare
the interaction between the impurity and the soliton in the
absence and presence of the nonlinear topological pumps.
Without the pump, whether the soliton can move through
the impurity depends crucially on the impurity mass. In con-
trast, the soliton in the nonlinear Thouless pump can transmit
through even for strong impurity strength and exhibits a
quantized motion. This work sheds light on the interplay of
nonlinearity, topology, and disorder, and promises potential
applications in information processing with solitons.
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APPENDIX A: NUMERICAL METHOD

We numerically solve the dimensionless GP Eq. (2) of
the main text by the split-step fast Fourier algorithm (see,
e.g., Ref. [59] and the references therein). In this section, we
present details on our numerical techniques.

By approximating −γ δ(x) = − γ√
2πσ

e−x2/(2σ 2 ), we rewrite
Eq. (2) of the main text as

i
∂ψ

∂t
= (O1 + O2)ψ, (A1)

where the two operators are

O1 = −1

2

∂2

∂x2
,

O2 = VOSL(x, t ) − |ψ |2 − γ√
2πσ

e−x2/(2σ 2 ).

We have [O1, O2] �= 0. To solve the time evolution, we imple-
ment the first-order splitting scheme

ψ (x, t + dt ) = exp(−iO1dt ) exp(−iO2dt )ψ (x, t ) (A2)

with a sufficiently small time step dt = 10−4. We use the fast
Fourier transform (FFT) algorithm to compute Eq. (A2): let
F denote the Fourier transform and F−1 denote the inverse
Fourier transform, we have

ψ (x, t + dt )

= F−1

[
exp

(
− i

2
k2dt

)
F[exp(−iO2dt )ψ (x, t )]

]
. (A3)

Finally, we choose dx = 5 × 10−4 in the spatial discretization
of the GP equation.

Using the above numerical scheme, we have reproduced
the known results of soliton motion for γ = 0 in the absence
of impurity, as well as the exact solutions of the bound state
when both the nonlinearity and the pump are absent. In the
presence of both the pump and the impurity, our numerical
simulations of the soliton motion find good agreement with
the results obtained from the variational approach.

APPENDIX B: CHERN NUMBER

In this section, we follow the standard procedures to cal-
culate Chern numbers of the bands underlying the linear
Thouless pump (see, e.g., Ref. [4]). The adiabatic motion
of a quantum particle moving in a slowly varying periodic
potential is described by the Schrödinger equation (h̄ ≡ 1)

i
∂

∂t
ψ = −1

2

∂2

∂x2
ψ + VOSL(x, t )ψ, (B1)

where the dimensionless Hamiltonian reads as

H = −1

2

∂2

∂x2
− Vs cos2

(
2πx

d

)
− Vl cos2

(πx

d
− νt

)
. (B2)

Using the Bloch’s theorem ψ (x, t ) = e−ikxu(x, t ) where
u(x + d, t ) = u(x, t ) and the quasimomentum k ∈ BZ, we
make the expansion ψ (x, t ) = e−ikx

∑∞
n=−∞ cn(t )einQx, where

Q = 2π/d and cn(t ) are expansion coefficients. Insert-
ing this expansion into Eq. (B1), and denoting c(t ) =
(. . . c−1, c0, c1 . . . )T , we formally obtain

i
∂

∂t
c = H̃ (k, t )c. (B3)

Here, the effective Hamiltonian matrix H̃ (k, t ) has parametric
dependence on time t , and satisfies H̃ (k, t + T ) = H̃ (k, t )
with the time periodicity T = π/ν.

In the numerical calculation, the expansion is usually trun-
cated at ±nmax = ±M leading to the truncated matrix H̃ (k, t )
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with the dimension (2M + 1) × (2M + 1), which is written as

H̃ (k, t ) = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

. . . h−2 −Vlξ (t ) −Vs

. . . −Vlξ
�(t ) h−1 −Vlξ (t ) −Vs

−Vs −Vlξ
�(t ) h0 −Vlξ (t ) −Vs

−Vs −Vlξ
�(t ) h1 −Vlξ (t ) . . .

−Vs −Vlξ
�(t ) h2 . . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2M+1)×(2M+1)

, (B4)

where the diagonal matrix element is hn = 2(k − nQ)2 −
2Vs − 2Vl for n = −M, . . . , M, and ξ (t ) = exp(2iνt ).

Finally, we diagonalize the truncated matrix H̃ (k, t ) to
obtain the adiabatic eigenstates φμ(k, t ) and corresponding
eigenvalues εμ(k, t ) (μ = 1, . . . , 2M + 1). These eigenvalues
form band structures in the two-dimensional parameter space
(k, t ). The Chern number Cμ associated with the μth band is
then defined as [4]

Cμ = i

2π

∫ T

0
dt

∫
BZ

dk[〈∂tφμ|∂kφμ〉 − 〈∂kφμ|∂tφμ〉]. (B5)

Following the above procedures, one reproduces the known
results in the case of linear topological pump (e.g.,
Refs. [5,27]). In our paper, M = 10 is sufficient for calculating
the Chern numbers of the band structures.

APPENDIX C: DERIVATION OF THE LAGRANGIAN

Here, we detail the derivation of the Lagrangian in Eq. (7)
in the main text. Inserting ansatz (5) into Eq. (6), and after
some tedious calculation, we obtain the following terms:

L1 = i

2

∫ +∞

−∞

(
φ� ∂φ

∂τ
− φ

∂φ�

∂τ

)
dX

= −(2η + a2)
∂β

∂τ
− 2z

∂κ

∂τ
− a2 ∂α

∂τ
. (C1)

The term associated with kinetic energy is calculated as

L2 = −1

2

∫ +∞

−∞

∣∣∣∣ ∂φ

∂X

∣∣∣∣
2

dX

= −
(

κ2η + 1

3
η3 + 1

2
a2γ̃ 2

)
. (C2)

The nonlinear term is evaluated as

L3 = 1

2

∫ +∞

−∞
|φ|4dX

= 2

3
η3 + 1

4
a4γ̃ . (C3)

The contribution from the impurity is given by

L4 =
∫ +∞

−∞
γ̃ δ(X )|φ|2dX

= γ̃ [η2sech2(z) + 2aηsech(z)γ̃ 1/2 cos(α) + a2γ̃ ].

(C4)
The term associated with the pump reads as

L5 =
∫ +∞

−∞

[
Ṽs cos

(
4πX

A

)

+ Ṽl cos

(
2πX

A
− 2ντ

A2

)]
|φ|2dX

= Ṽs

[
4π2

A
cos

(
4πz

Aη

)
csch

(
2π2

Aη

)
+ a2γ̃ 2A2

4π2 + A2γ̃ 2

]

+ 2π2Ṽl

A
cos

(
2πAz − 2ηντ

A2η

)
csch

(
π2

Aη

)

+ a2γ̃ 2A2Ṽl

π2 + A2γ̃ 2
cos

(
2ντ

A2

)
. (C5)

In the above derivations, we have neglected all the terms
associated with the overlapping of the two components (i.e.,
solitonic component and the bounded component) of the
ansatz. Physically, this means that we ignore the interaction
between the soliton and the impurity when they are far from
each other, while retaining their interaction when the soliton
is close to the impurity [53].

Finally, following from Eqs. (C1)–(C5), we arrive at
Eq. (7) through the summation L = L1 + L2 + L3 + L4 + L5.
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