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ABSTRACT

Colloidal semiconductor quantum dots (QDs) exhibit broadband light absorption, continuously tunable narrowband emission, and
high photoluminescence quantum yields. As such, they represent promising materials for use in light-emitting diodes, solar cells,
detectors, and lasers. Single-QD spectroscopy can remove the ensemble averaging to reveal the diverse optical properties and
exciton dynamics of QD materials at the single-particle level. The results of relevant research can serve as guidelines for
materials science community in tailoring the synthesis of QDs to develop novel applications. This paper reviews recent progress
in exciton dynamics revealed by single-QD spectroscopy, focusing on the exciton and multi-exciton dynamics of single colloidal
CdSe-based QDs and perovskite QDs. Finally, potential future directions for single-QD spectroscopy and exciton dynamics are

briefly considered.
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1 Introduction

Colloidal semiconductor quantum dots (QDs) typically consist of
inorganic cores and organic ligand molecules. Their sizes are
either smaller than or in close proximity to the Bohr radius of
excitons, and their nanostructures can bind excitons in three
spatial dimensions. Thanks to the quantum confinement effect of
QDs, they possess a discrete energy level structure similar to
atomic properties. Colloidal semiconductor QDs possess
advantages, including broadband absorption, narrow emission
bandwidth, high photoluminescence (PL) quantum yield,
adjustable emission wavelength, and convenient solution
processing [1,2]. QDs can be used as high-quality materials for
the preparation of optoelectronic devices such as light-emitting
diodes, solar cells, detectors, lasers, and quantum light sources
[3-7]. The PL properties of colloidal semiconductor QDs are
greatly affected by their size, morphology, coreshell structure,
surface ligands, and local environment. Even QDs produced in the
same batch exhibit significant differences. It is important to take
all these factors into account when preparing QDs for optimal
application in optoelectronic devices. Achieving precise
measurement of these variations is a fundamental issue in research
across materials science, crystallography, and interface chemistry.
Accurate measurement and characterization of the photophysical
properties of QDs are essential for preparing high-quality QDs
with uniform scale and achieving their intended applications.
While transmission electron microscopy is capable of effectively
characterizing the morphology of QDs, it is unable to provide
information regarding their optical properties [8—10]. Traditional

time-resolved PL spectroscopy allows measurement of certain
differences in QDs, such as spectral broadening in ensemble
samples and PL decay curves showing multi-exponential forms
[11,12]. However, these properties are determined by measuring
the QD ensemble system, and the results acquired represent an
average of the optical characteristics of all QDs within the
measurement area. The fast-evolving technology of single-QD
spectroscopy enables the measurement of PL dynamics in one
QD, thus providing accurate material differentiation data. Analysis
of the PL properties of single QDs provides insight into the
influence of various components, particle size, morphology,
core-shell structure, surface defects, surface ligands, and local
environment of QDs on their PL characteristics [13-16].
Consequently, the obtained results from single QD-spectroscopy
have the potential to effectively guide the design of QD materials
and contribute to the preparation of high quality QD materials
with uniform size and excellent luminescence properties.

A single exciton can be formed in a QD when an electron from
the valence band (VB) is excited into the conduction band (CB),
leaving a hole where the electron and hole are attracted by the
Coulomb force [17, 18]. When two or more excitons are present
simultaneously in a single QD, a biexciton or multi-exciton state is
formed [19]. The dimensions of QDs are typically only a few
nanometers, which significantly enhances the carrier—carrier
Coulomb interactions. Therefore, multi-excitons in QDs mainly
recombine in the form of an Auger process, i.e., the electron-hole
recombination energy is not emitted as a photon, but is
transferred to a third carrier. Therefore, the quantum vyield of
multi-excitons is typically much lower than that of single exciton
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[20,21]. Besides, multi-excitons often have extremely lower
formation probability in comparison to single excitons [22].
Therefore, studying multi-exciton dynamics of single QDs
remains a challenging task. The investigation into exciton and
multi-exciton dynamics of single QDs is highly important, as it
contributes to the advancement of applications using colloidal
QDs [23].

This paper reviews the recent progress in the exciton dynamics
revealed by single-QD spectroscopy and discusses several new
methods for measuring and manipulating exciton dynamics at the
single-QD level. The topics covered include the PL blinking
dynamics and control of blinking, exciton and multiexciton
dynamics, and manipulation of biexciton emission. Finally, the
potential future direction of single QD-spectroscopy and exciton
dynamics is briefly addressed.

2 Basic equipment and methods for single-QD
sectroscopy

Advances in optical microscopy have enabled routine observation
of the PL of a single QD using highly sensitive photodetectors.
Confocal microscopy is typically used for single-QD
measurements, as shown in Fig. 1. The experimental optical path
involves the laser passing through an excitation filter, a 1/2 wave
plate, and a 1/4 wave plate, before being reflected by a dichroic
mirror and focused onto the QD sample by an objective lens. The
PL of the QD sample is collected through the objective lens and
passes through a dichroic mirror, an emission filter, and a pinhole,
and is finally split by a beam splitter and detected by two single-
photon counting modules (SPCMs) [13,21,24]. To ensure
accurate measurements, it is crucial to select appropriate excitation
filter, dichroic mirror, and emission filter based on the absorption
and emission wavelengths of the QD samples. The excitation filter
serves to eliminate stray light from the laser. The dichroic mirror
separates the laser from the PL of the QDs. It reflects the short-
wavelength laser and transmits the long-wavelength PL. The
emission filter is then used to filter out the PL of the QDs. To
achieve single QD detection, the optical path must be adjusted so
that the position of the pinhole and the focus of the objective lens
are confocal. The benefit of this is that it can eliminate out-of-
focus photons and enhance the signal-to-noise ratio. The beam
splitter’s role is to divide the PL into two detectors with equal
probability for Hanbury Brown-Twiss (HBT) detection.
Time-tagged, time-resolved, and time-correlated single-photon
counting (TTTR-TCSPC) technology is a powerful tool in the
single-QD spectroscopy. This technology allows for the accurate
recording of the arrival time of each photon detected by the
SPCMs during single QD measurement, with precision up to the
picosecond level. Post-processing the data obtained from TTTR-
TCSPC technology can provide important experimental data of a
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single QD: PL intensity trace and PL decay curve. The PL intensity
trace is obtained by monitoring the change in the number of
detected PL photons per second. The PL decay trace is a
histogram constructed from the arrival time of every detected
photon. By combining PL intensity trace and the PL decay curve,
the exciton recombination dynamics of single QDs can be
effectively studied.

3 Single exciton recombination dynamics of
single QDs

The PL intensity trajectory of a single QD primarily arises from
the single exciton emission due to the strong nonradiation Auger
recombination and the low formation probability of multi-
excitons. Analysis of the PL intensity trajectories can provide
valuable information about the single exciton, such as its quantum
yield, exciton lifetime, as well as evolution with time. In weak light
excitation conditions, the PL of QDs mainly results from the
radiative recombination of single excitons. The quantum yield of
single exciton is proportional to the PL intensity. Therefore, the
changing trend of the quantum yield can be observed from the PL
trajectory. Also under weak light excitation conditions, the lifetime
of single exciton can be determined by fitting the PL decay trace.
In addition, by studying the correlation between the PL intensity
and lifetime of single excitons over time, the PL blinking
mechanisms of single QDs can be revealed.

3.1 PL blinking dynamics of single QDs

Under constant illumination, a single QD’s PL intensity fluctuates
between bright (on) and dark (off) states, a phenomenon known
as PL blinking [25, 26]. PL blinking is a phenomenon unique to
single particles (e.g., single molecules, single QDs, single perovskite
crystals, and single nanoplatelets) [27-31]. Studying PL blinking is
essential to comprehend the recombination dynamics of single
exciton in QDs [32]. The origin of PL blinking can be effectively
revealed through the correlation between the PL intensity and
lifetime of single QDs. Recent advances have classified PL blinking
mechanisms of QDs into three main types: Auger-blinking, band-
edge carrier (BC) blinking, and hot-carrier (HC) blinking.

The Auger-blinking of single QDs can be described by the
charging and discharging model of QDs [33,34]. Under
photoexcitation, QD has a likelihood undergoing photoionization,
that is, the electron (or hole) in the excitons is ionized. The
remaining hole (or electron) combines with the newly generated
electron-hole pair, forming a positive (or negative) trion state, a
three-particle state, as shown in Fig. 2(a). The trion states decay
mainly by non-radiative Auger recombination, transferring their
energy to an extra electron or hole, ultimately leading to a decline
in PL intensity and lifetime. When single QD undergoes the
ionization and deionization process, PL switching between the
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Figure1 Experimental setup for single-QD measurements. Reproduced with permission from Ref. [81], © American Chemical Society 2020.
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Figure2 Auger-blinking. (a) Schematic diagram of the formation of positive and negative trion states. (b) Typical PL blinking trace of a single QD. Bright state, grey
state, and dark state represent the neutral exciton state, negative trion state, and positive trion state, respectively. (c) Corresponding PL decay curves of bright state, grey
state, and dark state. Reproduced with permission from Ref. [35], © American Chemical Society 2021.

bright state (on-state) and the dark state (off-state) occurs, and
such a phenomenon is termed Auger-blinking. A typical Auger-
blinking trajectory is displayed in Fig. 2(b), and the corresponding
PL decay curves are presented in Fig. 2(c). In Auger-blinking of
CdSe-based QDs, the PL intensity and lifetime of the positive trion
states are often smaller than those of the negative trion states [35].
The reason is that the energy level density of hole states is much
higher than that of electron states. As a result, the Auger process
involving excitation within the hole band better satisfies the energy
conservation requirements than the Auger process accompanied
by electron excitation [36]. Recently, Qin and colleagues found
that geometry-dependent dielectric screening can decrease Auger
rates, and that positive trion states may encounter greater
dielectric screening compared to the corresponding negative trion
states [37]. By modifying the core-shell structure of the QDs to
regulate the dielectric screening, they discovered that the PL
intensity and lifetime of the negative and positive trion states were
inverted [37, 38]. For perovskite QDs, positive and negative trion
states are seldom differentiated in the PL trajectories [39—42]. This
is because the effective masses of electrons and holes in perovskites
are almost identical [41]. As a QD is charged with more charges,
the carrier—carrier Coulomb interactions in the QD are enhanced,
leading to changes in the Auger rate, the PL lifetime, and PL
intensity. For instance, Lei et al. recently synthesized cube-shaped
CdSe/CdS QDs [43]. The single cube-shaped CdSe/CdS QD
exhibits multiple emission states, which have been attributed to
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neutral, singly-charged, doubly-charged, and triply-charged
exciton states.

The BC-blinking of single QDs is usually described by the
multiple recombination center (MRC) model [45]. The multiple
recombination centers of QDs are non-radiative recombination
centers made up of multiple surface defects, which can generate
local energy levels located between QD’s conduction and valence
bands, as shown in Fig. 3(a). These local energy levels are known
as surface trap states [46]. These surface trap states are capable of
capturing the electron (or hole) in the exciton, which will then
recombine non-radiatively with the opposite charge carrier in the
QD core. The activation and deactivation of surface defects cause
changes in the non-radiative recombination rate (k, (¢)), leading
to fluctuations in PL intensity (I(¢)), that is, causing BC-blinking.
A typical BC-blinking trajectory is displayed in Fig. 3(b). The BC-
blinking can be mathematically expressed as I(t)o<k,/
(k. + k.. (t)) [47], where k, represents the radiative rate of single
exciton. For BC-blinking trajectory, the radiative rate ratio among
all the grey states is 1 [48]. The corresponding fluorescence
lifetime-intensity distribution (FLID) displays a linear correlation
between the PL intensity and the lifetime (Fig. 3(c)), which is in
good agreement with the MRC model. The basic difference
between BC-blinking and Auger-blinking is actually whether the
radiation rate varies or not. The radiative rate of the BC-blinking
remains constant. The changing of radiative rate in Auger-
blinking results in a nonlinear relationship in the FLID [48].
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Figure 3 BC blinking. (a) Schematic diagram of the origin of BC-blinking. The red dots represent activated surface defects, the number of which is proportional to
the non-radiative rate. (b) Typical BC-blinking trajectory of a single QD and corresponding lifetime values. (c) Corresponding FLID. Reproduced with permission

from Ref. [44], © Tsinghua University Press 2022.
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Figure4 HC blinking. (a) and (b) Schematic diagram of the origin of HC-blinking. (a) Dim state arises from surface traps capturing hot electrons before they cool
down to the conduction band edge. (b) Bright state occurs when the position of the Ej is above the energy of the surface traps (E,,). (c) Typical FLID of a single QD.
The dim state indicated by the arrow has the same lifetime as the bright state. Reproduced with permission from Ref. [50], © American Chemical Society 2019.

The HC-blinking behavior is similar to that of BC-blinking as it
is also caused by surface trapping. However, it distinguishes from
BC-blinking as the surface trap states can capture hot electrons
and non-radiatively recombine with holes in the valence band,
without capturing carriers at the band edge, as illustrated in Figs.
4(a) and 4(b). The capture of hot electrons does not reduce the PL
lifetime, but rather only the PL intensity, as shown in Fig. 4(c).
This type of non-radiative recombination does not compete with
the radiative rate of band-edge excitons. Klimov and colleagues
observed HC-blinking for the first time by regulating the Fermi
level (Ep) of single QDs using spectroelectrochemistry [49].
However, the HC-blinking was rarely observed in most QDs,
resulting in few subsequent reports [50, 51, 52].

Fluctuations in the PL intensity and lifetime of single QDs are
often accompanied by changes in the PL spectrum. Wang and
colleagues conducted low-temperature experiments to measure
the PL spectrum of single perovskite QDs [42, 53], and found that
the trion state spectrum was red-shifted compared to that of the
single exciton state, as presented in Fig. 5. This phenomenon is
attributable to differences in binding energy between the trion
state and that of the single exciton state. Ihara and colleagues
conducted a study in which they measured the PL properties of
single CdSe/ZnS QDs at room temperature, and a surface charge-
induced quantum-confined Stark effect was revealed through

simultaneous measurements of PL intensity, lifetime, and
spectrum [54]. The quantum confinement Stark effect is due to
the localized electric field generated by the QD’s surface charges,
which alters the overlap of the electron and hole wave functions,
as presented in Figs. 6(a) and 6(b). As the overlap between the
electron and hole wave functions decreases, this can lead to a
decrease in the radiative rate of QD excitons, ultimately resulting
in an increase in the PL lifetime, a decrease in PL intensity, and a
red shift in the spectrum. The study identified the quantum
confinement Stark effect in perovskite single QDs by observing the
phenomenon of reduced PL intensity (Fig. 6(c)) but extended
lifetime (Fig.6(d)) [55]. The inverse correlation between PL
intensity and lifetime in FLID indicated by the red arrow further
demonstrates the occurrence of the quantum confinement Stark
effect (Fig.6(e)). Moreover, it was observed that the surface
charges of single QDs have the potential to modulate the fine
energy level structure of QD band-edge excitons, hence changing
the polarization of PL [16, 56].

3.2 Blinking control of single QDs

3.2.1 Blinking control of single QDs by adjusting the light field

The Auger-blinking of the single QDs is significantly affected by
the excitation optical power density due to the formation of multi-
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Figure5 (a) Time-dependent PL spectral image of a single CsPbl; perovskite QD. XX, XX, X*, X, and X represent charged biexciton, neutral biexciton, doubly
charged single exciton, singly charged single exciton, and neutral single exciton state, respectively. The PL spectra of X, XX, X", XX, and X* are plotted in (b)—(f),
respectively. Reproduced with permission from Ref. [42], © American Physical Society 2017.
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Figure 6 Intrinsic quantum-confined Stark effect of single CH;NH;PbBr; perovskite QDs. (a) Schematic illustration of a single exciton in the absence of a surface
change. (b) Schematic illustration for the generation of quantum confinement Stark effect induced by a surface change. (c) Typical PL intensity trace for a single QD
under the action of quantum confinement Stark effect. The PL intensity marked by red line and green line corresponding to normal single exciton state and quantum-
confined Stark effect modified single exciton state, respectively. (d) Corresponding PL decay curves of the PL areas marked by red and green lines. The lower PL
intensity trajectory has longer PL lifetimes. (¢) Corresponding FLID map. Reproduced with permission from Ref. [55], © Wiley-VCH GmbH 2020.

excitons at higher excitation conditions [20, 57]. This is because
the Auger recombination of multi-excitons may cause QD
charging, as illustrated in Fig. 7(a) [33, 36, 58]. The QD charging
can convert the bright state of PL intensity traces into the dim
states. Thus far, the investigation of the blinking dynamics of
various QDs has revealed that the blinking rate increases with the
intensity of the excitation light, as depicted in Fig. 7(b) [33, 39, 53,
59]. Furthermore, the Auger-blinking is linked to the photon
energy of the excitation light. The greater the photon energy of the
excitation light, the more pronounced the PL blinking initiated by
the Auger mechanism, as illustrated in Fig.7(b) [19,33]. We
identified that the PL blinking of perovskite single QDs exhibits
BC-blinking under weak light excitation conditions. However,
both BC-blinking and Auger-blinking appear concurrently when

. @

the excitation light power increases [55,60,61]. Recently,
conversion of PL blinking types has been observed in single
colloidal QDs under higher excitation conditions [62]. The
blinking behavior of single alloyed CdSe/ZnS QDs undergoes an
irreversible conversion from Auger-blinking to BC-blinking, while
single perovskite QDs exhibit reversible conversion between BC-
blinking and more pronounced Auger-blinking.

3.2.2 Blinking control of single QDs by adjusting the Fermi level

The Fermi level can be adjusted by applying an external electric
field to the single QDs. The elevated Fermi level has the ability to
fill the trap states with electrons and suppress BC-blinking [49].
For Auger-blinking, when the Fermi level is adjusted above the
conduction band, the single QD is more likely to be negatively

(b)

1.0

400 nm, <N> =0.1

Trapping
- —

0.8
0.6

Ejection 4

o—o = o

04
0.2

Auger
e

o—

—_Auger

10°

(c)

b
o
)

PL intensity (a.u.)
=)

400 nm, <N>=0.1
———400 nm, <N>=0.5
———266 nm, <N>=0.08

-l
o
G
-
4
4
-

80
Time (ns)

L T
100

0.0

5.0
4.0
3.0
2.0
1.0
0.0

0.8
0.6
04
0.2
0.0

PL intensity (counts/ms)

266 nm, <N> =0.08

T v T T T 1
40 60 80 100
Time (s)

Figure7 (a) Schematic illustration of charging process of QDs. (b) PL intensity traces of a single QD at different excitation conditions. The (N)in figure is the average
number of photons absorbed per QD per pulse and is proportional to the power density of excitation light. Bright and dim states are separated by red dashed lines. (c)
Corresponding PL decay curves of bright states. Biexciton lifetime is obtained by biexponential fitting. Reproduced with permission from Ref. [19], © American
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charged, leading to an increase in the proportion of dim states. By
adjusting the electric field, Morozov et al. enabled the formation of
highly charged exciton states consisting of 12 electrons and 1 hole
within single QDs [63]. This results in an increased PL blinking of
single QDs and an increase in the proportion of dim state in the
PL intensity trajectory. LeBlanc et al. increased the proportion of
dim state on the PL intensity trajectory by applying an electric
field of 54 kV/cm across a single QD, which they attributed to
increasing activated surface traps [64]. We achieved successful
suppression of the PL blinking of single CdSeTe/ZnS QDs by
encasing them within N-type semiconductor indium tin oxide
(ITO) nanoparticles [65, 66]. We ascribe this achievement to the
rise in the Fermi level, which prevents the electron transfers from
the excited-state QDs to the trap states. We investigated the
impact of surface charges on the blinking mechanisms of single
CdSe/CdS/ZnS QDs by adjusting both positive and negative
surface charges. It was discovered that positive surface charges can
modify the blinking mechanisms of QDs from Auger-blinking to
BC-blinking. The change is attributed to the positive surface
charges which cause the surface traps to activate and deactivate, as
shown in Fig. 8 [44].
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3.2.3 Blinking control of single QDs by adjusting the core-shell
structure

QDs with a core-shell structure exhibit higher PL emission
stability than those with only a core. Gradual suppression of PL
blinking was observed with the increase in shell thickness of
core-shell QDs [59, 67—69]. This suppression can be attributed to
the alleviation of biexciton Auger recombination, which induces
the charging of QDs. Jain et al. [70] and Hou et al. [71]
demonstrated that modifying the smoothness of the core-shell
interface has no impact on the Auger recombination of CdSe-
based QDs, and therefore has no influence on the Auger-blinking
of single QDs. We found that single Cd,Zn,_Se,S, ,/ZnS QDs
with a smooth core-shell interface potential exhibit more frequent
blinking than those with a sharp core-shell interface potential, as
illustrated in Fig.9(a) [72]. We interpret this occurrence as
electrons in excitons being more likely to delocalize towards the
QD surface due to the smooth structure of the core-shell
interface, resulting in their trapping by surface defects, as depicted
in Fig. 9(b).

_“ CdSe CdS ZnS
QD*
CBl . -ﬂ
- Atll\atul
.}“
e’ 8]

Figure8 Schematic diagrams of energy bands and exciton recombination channels for QDs with negative surface charges (QD") and positive surface charges (QD"),
respectively. The negative surface charges passivate the surface traps of the QDs, while the positive surface charges will activate the surface traps to open the

nonradiative recombination channels of excitons. Reproduced with permission from Ref. [44]

, © Tsinghua University Press 2022.
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blinking of single CdSe-based QDs with PPD molecules. Reproduced with permission from Ref. [35], © American Chemical Society 2021.

3.2.4 Blinking control of single QDs by adjusting the charging and
discharging rate

Charge transfer can accelerate the discharging process of single
QDs, thereby suppressing their blinking. Hu et al. [73] investigated
the effect of oxygen on the PL blinking of single QDs and
discovered that the blinking frequency reduced as oxygen
concentration increased in the air, because oxygen molecules
provided additional discharging channels for the QDs through
charge transfer. The successful suppression of PL blinking in
various types of CdSe-based QDs was achieved through the use of
p-phenylenediamine (PPD) molecules, as demonstrated in Fig. 10
[35,74]. This was accomplished without affecting their PL
intensity, lifetime, or emission spectra. PPD molecules function by
transferring charges to eliminate redundant holes in QDs,
resulting in the suppression of the long dark states generated by
the positive trion state. Furthermore, the investigation revealed
that PPD molecules successfully inhibit the photobleaching of
CdSe-based QDs, extending the mean survival time of single QDs
from a few minutes to over than 1 h. Moreover, PPD-stabilized
QDs have been successfully implemented in multiple areas
including single particle tracking and live cell imaging. Another
amine compound, dimethylaniline (DMA) molecule, was
employed by Thomas et al. [75] to effectively suppress the PL
blinking of CdSe/ZnS core-shell QDs. They also managed to
suppress the PL blinking of perovskite single QDs by filling the
surface defects through the introduction of CH;NH,Br and
CH;NHj! halide precursors [76].

4 Multiexciton recombination dynamics of
single QDs

4.1 Measurement of multiexciton emission properties of
single QDs

4.1.1 Measurement of biexciton lifetime for single QDs

The biexciton lifetime of single QDs is typically an order of
magnitude shorter than that of single exciton. On the one hand,
the radiative lifetime of biexciton is one-fourth that of single
exciton, because the radiative recombination path of biexciton
state is four times that of a single exciton state, as depicted in
Fig. 11. This ratio of radiative recombination path is often used for
estimating the radiative lifetime of biexcitons [39]. In contrast, the
nonradiative lifetime of biexciton due to Auger decay is a quarter
that of the trion state, presuming that the positive and negative
trion states possess the same Auger lifetime. When fitting the PL
decay curve of a single QD with a bi-exponential function, the
shorter lifetime is due to biexciton emission and the longer
lifetime is due to single exciton emission. Huang et al. obtained the
biexciton lifetime through biexponential fitting the PL decay curve
of bright state in single QD’s intensity trajectory, as depicted in
Fig. 7(c), avoiding the trion states” influence on biexciton lifetime
measurements by extracting bright-state photons from intensity
trajectories [19, 77]. Single-QD spectroscopy combined with HBT
analysis offers a novel means of determining the biexciton
lifetimes. A two-photon event is formed by the cascaded
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Figure 11  Schematic diagram of single-photon event, two-photon event, and cascaded relaxation of biexciton state to the ground state.
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relaxation of the biexciton state to the ground state: The first
photon is emitted when transitioning from the biexciton state to
the single exciton state, and the second photon is emitted when
transitioning from the single exciton state to the ground state, as
depicted in Fig. 11. By extracting the first photons from the two-
photon events to construct a biexciton decay curve and fitting it
with a single exponent, the biexciton lifetime can be obtained [36].

4.1.2  Measurement of biexciton quantum yield for single QDs

Based on the HBT experimental scheme, Bawendi and colleagues
developed a method to measure the biexciton quantum yield of
single QDs using second-order correlation function (¢”(7)) [78].
Under weak light excitation conditions, the ratio of the quantum
yields of the biexciton to the single exciton is approximately equal
to the ratio of the central peak’s area to the side peak’s area in the
£%(7) function (denoted by R). This method has been widely used
for determining biexciton quantum yield. Htoon and colleagues
analyzed the g”(7) of different intensity regions on the PL intensity
trajectory [79]. They observed an increase in the R value as the PL
intensity decreased. This is due to the fact that the single exciton
quantum yield, which serves as the denominator of R, is roughly
proportional to the PL intensity. Chen and colleagues employed a
comparable methodology to measure the ¢”(r) function across
various intensity regions. The results showed a smaller R value for
the neutral exciton state than for the negative trion state and
positive trion states [80].

We have developed a time- and intensity-resolved single-
photon statistical method [81]. This method can directly measure
the quantum yield of biexcitons, independent of the quantum
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yield of single excitons, and allows higher excitation conditions.
Through this method, we determined the evolution characteristics
of the biexciton quantum yield of single QDs with PL intensity for
BC-blinking and Auger-blinking trajectories. Further, we revealed
that at the single-QD level, the ratios of radiative and nonradiative
rates between charged and neutral biexcitons in Auger-blinking
are consistent with the asymmetric band structure theoretical
expectations (Figs. 12(a) and 12(b)). Furthermore, the research
discovered that surface traps of QDs could offer non-radiative
recombination  channels for  biexcitons.  Experimental
measurements  show that this surface’s non-radiative
recombination rate for biexcitons is roughly 4 times that of single
excitons, as depicted in Figs. 12(c) and 12(d).

4.1.3 Measurement of biexciton spectrum for single QDs

At room temperature, the biexciton spectrum of a single QD
typically blends with the spectra of single exciton and trion state,
making it challenging to distinguish [82]. Consequently, low
temperature experimental conditions are necessary to measure the
biexciton spectrum of single QD. Wang and colleagues [42]
conducted an analysis of the biexciton spectrum of single
perovskite QDs at low temperatures and determined the impact of
QD charging on the fine energy level structure of biexcitons by
measuring the spectrum changes in real time with the intensity of
PL. The results are presented in Fig. 5. In order to obtain room
temperature measurements of biexciton spectrum for a single QD,
Vonk et al. [83] developed a cascade spectroscopy method. This
method allows for the resolution of the photon energy of the first
or second photon in two-photon events by incorporating a galvo
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Figure 12 (a) Statistical distribution of the ratios of radiative rates and of Auger rates between charged and neutral biexciton states. (b) Schematic of radiative
recombination pathways (red arrows) and nonradiative Auger recombination (black arrows) of the charged biexciton state for a CdSe-based QD. (c) Statistical
distributions of the radiative rate ratio () and of the surface nonradiative rate ratio (5) between biexciton and single exciton. (d) Schematic of radiative recombination
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Reproduced with permission from Ref. [81], © American Chemical Society 2020.
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mirror and transmission grating in the HBT optical path. The
method is similar to the first photon method for measuring
biexciton lifetime [36]. The biexciton spectrum was acquired by
extracting the first arriving photon in the time sequence of
biexciton and single exciton radiation. The biexciton spectrum of
the single QDs disclosed an average spectral line width of 86 meV.
Lubin et al. [84] developed a heralded spectroscopy using a single-
photon avalanche diode array-based spectrometer, enabling direct
observation of biexciton-exciton emission cascades and
measurement of the biexciton binding energy of single QDs at
room temperature.

42 Manipulation of biexciton emission properties of
single QDs

4.2.1 Biexciton emission of single QDs under different interface
environments

The g¢”(1) function of CdSeTe/ZnS single QDs on N-type
semiconductor ITO nanoparticles was measured, revealing that
the R value of single QDs on ITO was significantly higher than
that on glass coverslips. This suggests that the ratio of the
quantum yield of biexciton to single exciton is increased on ITO
[85]. Rakovich and colleagues [86] adjusted the distance between
the single QDs and the gold nanoparticle film by varying the
thickness of the polymethyl methacrylate (PMMA) polymer film,
and found that the R value rises with declining PMMA thickness,
as shown in Fig. 13(a). Masuo et al. [87] employed the tip of an
atomic force microscopy (AFM) to bring a cubic gold
nanoparticle in close proximity to CdSe/ZnS single QDs. The
measured R value increases with the reduced distances, as
illustrated in Fig. 13(b). The observed increase in the R value can
be accounted for by the joint effect of fluorescence resonance
energy transfer between QDs and gold nanoparticles, and the
Purcell effect.

4.2.2  Effect of QD core-shell structure on biexciton

Naiki et al. [88], Hiroshige et al. [89], and Rabouw et al. [90]
altered the Auger recombination rate of the biexciton by
regulating the shell thickness of the QDs. Ma et al. [91] and
Mangum et al. [92] modified the Auger recombination rate of the
biexciton by regulating the size of the QD core. Park et al. [93] and
Hou et al. [71] modified the Auger recombination rate of the
biexciton by adding an alloy layer between the core-shell of QDs
in order to adjust the core-shell interface potential. Additionally,
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Vaxenburg et al. [58] calculated the fine energy level structure of
biexcitons based on the asymmetric energy level structure and
hole-hole interaction of QDs and theoretically simulated the
effects of core size of QD and shell thickness on the Auger
recombination rate of the biexciton. Our discovery reveals that the
smooth core-shell interface potential can slightly reduce the
Auger recombination of biexcitons in single QDs. The reason for
this is that the smooth interfacial potential can increase the
delocalization of the electron wave function and therefore reduce
the Auger recombination rate of biexcitons [72].

4.2.3 Application of time-gating exciton

recombination dynamics of single QDs

technique  to

The PL lifetime of multi-excitons is much shorter than that of
single exciton due to the Auger effect. Hence, configuring a time
gate on the single-photon detector can effectively eliminate the
multi-exciton emission. Mangum et al. [94] successfully
disentangled the effects of clustering and multi-exciton emission
of QDs to distinguish individual QDs from QD clusters using time-
gating technique [95, 96]. Feng et al. [97] used an acousto-optic
modulator as a time-delay gate setting to filter out the multi-
exciton emission of single QDs under high-power excitation in the
detection optical path of a confocal microscope and achieved a
high-purity single-photon source at room temperature. The time-
gating technique was combined with the spatially coincident single-
photon statistical technique [98], enabling rapid and precise
identification of single QDs during the scanning process of the
confocal microscope [99]. The time-gating technique successfully
identified single QDs on monolayer MoS,, despite the spectral
overlap between the intense emission of MoS, and the weak
emission of single QDs, as illustrated in Fig. 14 [100].

5 Summary and outlook

Single-QD spectroscopy has shown considerable advantages and
potential for the measurement and characterization of
photophysical properties of QD materials. As new functional QD
materials continue to be developed, it is crucial to enhance single-
QD spectroscopy for more accurate optical measurements and
characterization.

Single-QD spectroscopy typically requires the use of confocal
microscopy to measure numerous single QDs one by one in order
to obtain statistical results, which can be a time-intensive process.
Therefore, it is important to devise a method to measure multiple
single QDs simultaneously to improve measurement efficiency.
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Figure 13  (a) Manipulating biexciton emission of single QDs using gold nanorods. Their distance was adjusted by PMMA film thickness, and the g”(7) function was
used to characterize the biexciton emission. Reproduced with permission from Ref. [86], © American Chemical Society 2019. (b) Biexciton emission enhancement
from a single QD using AFM manipulation of a cubic gold nanoparticle. Reproduced with permission from Ref. [87], © American Chemical Society 2015.
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Figure 14 PL intensity images of single QDs on monolayer MoS, with long-pass filters of (a) 655 nm and (b) 736 nm. (c) Corresponding PL lifetime images with the
long-pass filter of 736 nm. The areas marked by yellow circles are single QDs on silicon. (d) Corresponding time-gated PL intensity image with delay time of 5 ns and
the emission filter of 736 nm. Reproduced with permission from Ref. [100], © The Owner Societies 2023.

For instance, the method of wide-field fluorescence imaging
enables the simultaneous measurement of PL blinking dynamics
of tens or even hundreds of single QDs [101-103]. Houel et al.
[104] presented a method for deriving the power-law exponents
from the single QDs’ intensity autocorrelation functions. This is
achieved through simultaneous recording of the emission time
trajectories of 450 single QDs, rather than the commonly used
threshold method. Furthermore, the defocusing method can also
simultaneously acquire the dipole orientation information of large
numbers of single particles [56,105,106]. Analyzing the PL
dynamics of numerous single QDs frequently necessitates the use
of more sophisticated data analysis methods, like machine
learning.

Measuring the absolute quantum yield of a single QD remains a
challenging task due to limitations in efficiently determining the
number of photons absorbed by a single QD. As an alternative
approach, the radiative rate and non-radiative rate of the single
QD, which determine the PL quantum yield of QDs, can be
measured. By making adjustments of the radiation rate and
observing changes in the total rate (i.e., the reciprocal of the PL
lifetime), the absolute quantum yield of the single QD can be
inferred [32]. However, achieving quantitative changes in the
radiative rate of a single QD while maintaining constant non-
radiative rate is challenging in conventional experimental systems.
Thus, it is imperative to devise a more efficient and concise
method for determining the absolute quantum yield of single QDs
through single-QD spectroscopy.

To examine the influence of QD materials’ structural properties
on their PL dynamics, it is essential to develop a technology that
combines single-QD spectroscopy with other measurement
methods. For instance, Tachikawa et al. [107] merged high-
resolution electron microscopy with single-QD spectroscopy to
acquire the correlation features of single QD morphology and PL
dynamics. Tian et al. [108] demonstrated the carrier diffusion
process in single crystals through the integration of PL scanning
imaging microscopy with time-resolved technology. In the future,

the trend in development will encompass the use of single-QD
spectroscopy combined with other measurement methods.

Single QDs can be used to prepare both single photon sources
and entangled photon sources, which play an extremely important
role in quantum information [23,109,110]. The process of
quantum information demands that single QDs produce
indistinguishable single photons or entangled photon pairs, and
necessitates that the optical coherence time surpasses twice the
lifetime of its spontaneous emission. Bawendi and colleagues [111,
112] discovered that at low temperature, red-emitting
InP/ZnSe/ZnS colloidal QDs have narrower line widths than
typically synthesized CdSe QDs. Additionally, InP/ZnSe/ZnS
single QDs exhibit single-photon purities g¢”(0) of 0.077-0.086 and
a lower-bounded optical coherence time of 250 ps. Utzat et al.
[113] found that perovskite single QDs exhibit highly efficient
single-photon emission with optical coherence times of up to
80 ps, which is a significant portion of their radiative lifetime of
210 ps. Lv et al. [114] found that an external electric field can
eliminate the fine energy level structures of single exciton and
biexciton of single perovskite QDs at low temperature. This
discovery could pave the way for the generation of polarization-
entangled photon pairs.

Currently, single-QD spectroscopy has proven to be a valuable
technical tool, demonstrating numerous advantages and potential
in solving scientific problems across various disciplines. The
advancement of single-QD spectroscopy technology will continue
to make substantial contributions to various disciplines, leading to
further advancements and breakthroughs in the future.
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