张雷 | |
教授,博士生导师,山西省高校优秀青年学术带头人,三晋英才,中国光学工程学会激光诱导击穿光谱专业委员会副秘书长。 从事激光光谱检测在工业、生物、国防等领域的应用基础研究,在激光诱导击穿光谱、LIBS-XRF-NIR多光谱融合、机器视觉等方面取得了多项关键技术突破,研发了煤质激光计量、粒度在线分析、入厂煤智能管控、水泥智能化配料等系统装备,已应用于中国石油化工集团、格盟国际能源、晋能控股电力集团、山西阳光焦化集团、狮头集团、内蒙古准能集团、辽宁铁法煤业集团等电力、焦化、煤化工及建材行业。 主持国家科技支撑1项、装备预研1项、国家自然科学基金3项及山西省重大科技专项等省部级科研项目11项、产学研合作项目6项;发表学术论文100余篇,授权国家发明专利16项,其中实施转化6项,登记软著7项,获省技术发明一等奖(2011年)、省电力创新一等奖(2019年)、省高校科学技术二等奖(2012年)、清洁发电国家地方联合工程中心科技创新二等奖(2019年)。 |
办公地址: 激光光谱研究所 邮箱: k1226@sxu.edu.cn 办公电话: 0351-7018904 |
研究方向: 1. 激光诱导击穿多光谱融合检测技术 2. 激光复合光谱立体侦察技术 3. 机器视觉光学图像技术 科研项目: 1、国家科技支撑计划:煤电节能减排在线监测及优化控制系统研发与工程示范,主持 2、国家自然科学基金:共心多径腔增强双脉冲LIBS微量元素分析原理与技术研究,主持 3、国家自然科学基金:高精度超高空间分辨率的LIBS固相同位素测量技术研究,主持 4、国家自然科学基金:基于LIBS-LIF联用的飞灰中碳元素高稳定定量分析方法研究,主持 5、山西省科技重大专项:第三代超低排放循环流化床锅炉技术开发及工程示范,主持 6、山西省高等学校优秀青年学术带头人资助项目,主持 7、高校科技成果转化项目:面向大型煤化工的煤气化参数快速分析仪开发与应用,主持 8、中石化:煤制油原料特性快速分析方法开发,主持 9、横向项目:煤炭智能分析计量技术开发,主持 10、国家自然科学基金科学仪器专项:基于激光诱导击穿光谱的煤质检测仪器研究,参与 11、国家国际科技合作专项:基于自组网无人机群的污染气体激光监测平台,参与 12、山西省科技成果引导专项:水泥工业生产智能化配料装备应用与推广,参与 近期论文: [1]Accuracy enhancement of LIBS-XRF coal quality analysis through spectral intensity correction and piecewise modeling, Front. Phys. 9 (2022) 823298. [2]Measurement and analysis of species distribution in laser-induced ablation plasma of an aluminum-magnesium alloy, Plasma Sci. Technol. 24 (2022) 035005. [3]Numerical simulation of laser-induced plasma in background gas considering multiple interaction processes, Plasma Sci. Technol. 23 (2021) 035001. [4]Kinetic evolution of laser ablating alloy materials, Front. Phys. 9 (2021) 812283. [5]Ultra-repeatability measurement of the coal calorific value by XRF assisted LIBS, J. Anal. Atom. Spectrom. 35(12) (2020) 2928. [6]Concentric multipass cell enhanced double-pulse laser-induced breakdown spectroscopy for elemental analysis, Spectrochim. Acta B 168 (2020) 105851. [7]Resonance/non-resonance doublet-based self-absorption-free LIBS for quantitative analysis with a wide measurement range, Opt. Express 27(3) (2019). [8]Rapid selection of analytical lines for SAF-LIBS based on the doublet intensity ratios at the initial and final stages of plasma, Opt. Express 27(22) (2019) 32184. [9]Species distribution in laser-induced plasma on the surface of binary immiscible alloy, Spectrochim. Acta B 158 (2019) 105644. [10]Mechanisms and efficient elimination approaches of self-absorption in LIBS, Plasma Sci. Technol. 21(3) (2019) 15. [11]Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity, Plasma Sci. Technol. 20(3) (2018) 035502. [12]Laser-induced plasma characterization through self-absorption quantification, J. Quant. Spectrosc. Radiat. Transfer 213 (2018) 143. [13]Homogeneous-material-based calibration method for correcting laser-induced breakdown spectroscopy measurement-error bias in the case of dust pollution, Appl. Opt. 56(35) (2017) 9644. [14]Stability enhanced on-line powdery cement quality monitoring using laser-induced breakdown spectroscopy, IEEE Photonics J. 9(5) (2017) 6804010. [15]Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics, J. Anal. Atom. Spectrom. 32(8) (2017) 1519. [16]Development and performance evaluation of self-absorption-free laser-induced breakdown spectroscopy for directly capturing optically thin spectral line and realizing chemical composition measurements, Opt. Express 25(19) (2017) 23024. |