0
欢迎访问山西大学激光光谱研究所
首页 / 研究人员 研究人员
武红鹏
发布时间:2024-10-12 浏览:
武红鹏
教授、博士生导师

激光光谱研究所先进激光光谱技术团队负责人,国家优青,山西大学破格教授,长期开展基于激光光谱技术的痕量气体传感研究。主持国家自然科学基金委优秀青年科学基金项目、面上项目、青年项目,军委国防科技创新特区项目子课题,山西省“1331工程”重点创新团队建设项目,山西省科学技术厅应用基础研究计划项目,山西省教育厅高等学校科技创新计划项目以及多项国家重点实验室开放课题项目和横向项目等。

截止目前共发表SCI论文105篇,其中以第一作者或通讯作者在Nature Communications, Light: Science & Applications,ACS Sensors, Applied Physics Letters等期刊发表学术论文36篇,5篇文章入选ESI高被引论文,单篇SCI他引最高285次;申报中国和美国发明专利15项,其中4项已在企业成功转化应用。申请人2021-2023年连续三次入选斯坦福大学全球前2%顶尖科学家榜单,Google Scholar H因子为42,近五年,受邀在国际及国内会议上做邀请报告13次。

研究成果获得包括教育部高等学校科学研究优秀成果奖(科学技术)技术发明一等奖、山西省科学技术奖自然科学奖一等奖、中国光学学会科技创新奖一等奖、山西省教学成果奖(高等教育研究生)特等奖在内的多项国家级和省部级学术奖项。

办公地址:光谱所309

电子邮箱:wuhp@sxu.edu.cn




学习及工作经历

2007.09—2011.07,山西大学,物理电子工程学院,本科,物理学(国家基地)专业

2011.09—2017.07,山西大学,量子光学与光量子器件国家重点实验室,激光光谱研究所,

                                硕博连读,原子与分子物理专业

2015.09—2016.10,美国莱斯大学(Rice University),电子计算机工程系,

                                国家公派联合培养研究生,激光及应用专业

2017.12—2019.12,山西大学,量子光学与光量子器件国家重点实验室,激光光谱研究所,讲师

2019.12—至今,山西大学,量子光学与光量子器件国家重点实验室,激光光谱研究所,教授(破格)


研究方向:

新型激光光谱技术: 石英增强光声光谱、频率梳光声光谱、THz光声光谱、可调谐半导体吸收光谱技术和光电仪器开发与应用(军工、环境、电力等领域)。


主要学术兼职:

中共山西省委联系服务专家;

山西省青年科技人才协会副秘书长;

教育部全国研究生教育评估监测专家库专家;

中国光学工程学会光谱技术及应用委员会委员;

中国激光杂志社青年编委;

红外与激光工程杂志社青年编委;

美国Thorlabs公司与意大利巴里理工大学国际联合实验室高级顾问;

担任SCI期刊《Sensors》客座编辑;

担任SCI期刊《Frontiers in Mechanical Engineering》客座编辑;

担任SCI期刊《Applied Sciences》客座编辑;

担任SCI期刊《Molecules》客座编辑。


近年主要获奖:

2022年度教育部高等学校科学研究优秀成果奖,技术发明一等奖;

2023年度山西省科学技术奖,自然科学一等奖;

2023年度中国光学学会科技创新奖,技术发明一等奖;

2023年度山西省教学成果(研究生)特等奖;

入选2021年全球前2%顶尖科学家榜单;

入选2022年全球前2%顶尖科学家榜单;

入选2023年全球前2%顶尖科学家榜单;

山西省第十五届“兴晋挑战杯”大学生课外学术科技作品竞赛特等奖-指导教师;

第十八届“挑战杯”全国大学生课外学术科技作品竞赛“卫星”级作品奖-指导教师;

获评全国光学优秀博士学位论文。


近年发表主要学术论文:

1. “Quartz-enhanced multiheterodyne resonant photoacoustic spectroscopy” Light: Science & Applications 13, 77 (2024).

2 “Cantilever-enhanced dual-comb photoacoustic spectroscopy” Photoacoustics 38, 100605 (2024).

3. “Photoacoustic spectroscopy for fault diagnostics in high voltage power transmission systems: A review” Measurement 227, 114259 (2024).

4 “Folded-optics-based quartz-enhanced photoacoustic and photothermal hybrid spectroscopy” Photoacoustics 35, 100580 (2024).

5.“Photoacoustic Heterodyne CO Sensor for Rapid Detection of CO Impurities in Hydrogen” Analytical Chemistry 96, 547 (2024).

6. “End-to-end methane gas detection algorithm based on transformer and multi-layer perceptron” Optics Express 32, 987 (2024).

7. “Carbon monoxide impurities in hydrogen detected with resonant photoacoustic cell using a mid-IR laser source” Photoacoustics 36, 100585 (2024).

8. “Ppb-level NH3 photoacoustic sensor combining a hammer-shaped tuning fork and a 9.55 µm quantum cascade laser” Photoacoustics 33, 100557 (2023).

9. “Light-induced thermoelastic sensor for ppb-level H2S detection in a SF6 gas matrices exploiting a mini-multi-pass cell and quartz tuning fork photodetector” Photoacoustics 33, 100553 (2023)

10. “Assessment of vibrational-translational relaxation dynamics of in a wet-nitrogen matrix though QEPAS” Photoacoustics 31, 100518 (2023).

11. “Roadmap on nonlinear optics-focus on Chinese research” Journal of physics: photonics 5, 032501 (2023).

12. “Quartz-enhanced photoacoustic spectroscopy (QEPAS) and Beat frequency-QEPAS techniques for air pollutants detection: a comparison in terms of sensitivity and acquisition time” Photoacoustics 31, 100479 (2023).

13. “Synthesizing Metal Oxide Semiconductors on Doped Si/SiO2 Flexible Fiber Substrates for Wearable Gas Sensing” Research 6, Article 0100 (2023).

14. “Detection of Hydrogen Sulfide in Sewer Using an Erbium-Doped Fiber Amplified Diode Laser and a Gold-Plated Photoacoustic Cell” Molecules 27, 6505 (2022).

15. “Ppb-level mid-IR quartz-enhanced photoacoustic sensor for sarin simulant detection using a T-shaped tuning fork” Sensors and Actuators: B. Chemical 390, 133937 (2023).

16. “Non-invasive skin respiration (CO2) measurement based on quartz-enhanced photoacoustic spectroscopy” Analytical Chemistry 95, 6138 (2023).

17. “Methodology and applications of acousto-electric analogy in photoacoustic cell design for trace gas analysis” Photoacoustics 30, 100475 (2023).

18. “Measurement of methane, nitrous oxide and ammonia in atmosphere with a compact quartz-enhanced photoacoustic sensor” Sensors and Actuators: B. Chemical 375, 132953 (2023).

19. “Characterization of H2S QEPAS detection in methane-based gas leaks dispersed into environment” Photoacoustics 29, 100438 (2023).

20. “Trace photoacoustic SO2 gas sensor in SF6 utilizing a 266nm UV laser and an acousto-optic power stabilizer Optics Express 31, 6974 (2023).

21. “Methane and ethane detection from natural gas level down to trace concentrations using a compact mid-IR LITES sensor based on univariate calibration” Photoacoustics 29, 100448 (2023).

22. “Simultaneous monitoring of atmospheric CH4, N2O, and H2O using a single gas sensor based on Mid-IR quartz-enhanced photoacoustic spectroscopy” Analytical Chemistry 94, 17522 (2022).

23. “Position effect of laser beam waist in quartz-enhanced photoacoustic spectroscopy” Infrared Physics and Technology 125, 104271 (2022).

24. “All-optical light-induced thermoacoustic spectroscopy for remote and non-contact gas sensing” Photoacoustics 27, 100389 (2022).

25. “Clamp-type quartz tuning fork enhanced photoacoustic spectroscopy” Optics Letters 47, 4556 (2022).

26. “Photoacoustic heterodyne breath sensor for real-time measurement of human exhaled carbon monoxide” Photoacoustics 27, 100388 (2022).

27. “Calibration-free mid-infrared exhaled breath sensor based on BF-QEPAS for real-time ammonia measurements at ppb level” Sensors and Actuators: B. Chemical 358, 131510 (2022).

28. “Elliptical-tube off-beam quartz-enhanced photoacoustic spectroscopy” Applied Physics Letters 120, 171101 (2022).

29. “Quartz-enhanced photoacoustic NH3 sensor exploiting a large-prong-spacing quartz tuning fork and an optical fiber amplifier for biomedical applications” Photoacoustics 26, 100363 (2022).

30. “High-concentration methane and ethane QEPAS detection employing partial least squares regression to filter out energy relaxation dependence on gas matrix composition” Photoacoustics 26, 100349 (2022).

31. “Compact quartz-enhanced photoacoustic sensor for ppb-level ambient NO2 detection by use of a high-power laser diode and a grooved tuning fork” Photoacoustics 25, 100325 (2022).

32. “Compact QEPAS humidity sensor in SF6 buffer gas for high-voltage gas power systems” Photoacoustics 25, 100319 (2022).

33. “Quartz-Enhanced Photoacoustic Spectroscopy for multi-gas detection: a review” Analytica Chimica Acta 1202, 338894 (2022).

34. “High and flat spectral responsivity of quartz tuning fork used as infrared photodetector in tunable diode laser spectroscopy” Applied Physics Reviews 8, 041409 (2021).

35. “Multiple-sound-source-excitation quartz-enhanced photoacoustic spectroscopy based on a single-line spot pattern multi-pass cell” Applied Physics Letters 118, 161101 (2021).

36. “Palm-sized methane TDLAS sensor based on a mini-multi-pass cell and a quartz tuning fork as a thermal detector” Optics Express 29, 12357-12364 (2021).

37. “H2S quartz-enhanced photoacoustic spectroscopy sensor employing a liquid-nitrogen-cooled THz quantum cascade laser operating in pulsed mode” Photoacoustics 21, 100219 (2021).

38. “Quartz-enhanced photoacoustic spectroscopy exploiting low-frequency tuning forks as a tool to measure the vibrational relaxation rate in gas species” Photoacoustics 21, 100227 (2021).

39. “Ppb-level gas detection using on-beam quartz-enhanced photoacoustic spectroscopy based on a 28kHz tuning fork” Photoacoustics 25, 100321 (2021).

40. “Mid-infrared quartz-enhanced photoacoustic sensor for ppb-level CO detection of SF6 decomposition exploiting an exotic T-grooved quartz tuning fork” Analytical Chemistry 92, 13922 (2020).

41. “Three-dimensional printed miniature fiber-coupled multipass cells with dense spot patterns for ppb-level methane detection using a near-IR diode laser” Analytical Chemistry 92, 13034 (2020).

42. “Partial Least-Squares Regression as a Tool to Retrieve Gas Concentrations in Mixtures Detected Using Quartz-Enhanced Photoacoustic Spectroscopy” Analytical Chemistry 92, 11035 (2020).

43. “Light-induced thermo-elastic effect in quartz tuning forks exploited as a photodetector in gas absorption spectroscopy” Optics Express 28, 19074 (2020).

44. “Quartz-enhanced photoacoustic spectroscopy for hydrocarbon trace gas detection and petroleum exploration” Fuel 277, 118118 (2020).

45. “Generalized optical design of two-spherical-mirror multi-pass cells with dense multi-circle spot patterns” Applied Physics Letters, 091103 (2020).

46. “ppb-Level SO2 Photoacoustic Sensors with a Suppressed AbsorptionDesorption Effect by Using a 7.41 μm External-Cavity Quantum scade Laser ACS Sensors 5, 549 (2020).

47. “Piezo-enhanced acoustic detection module for mid-infrared trace gas sensing using a grooved quartz tuning fork” Optics Express 27, 35267 (2019).

48. “Dual-gas Quartz-enhanced photoacoustic sensor for simultaneous detection of methane/nitrous oxide and water vapor” Analytical Chemistry 91, 12866 (2019)

49. “Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibratiion” Sensors and Actuators B: Chemical 297, 126753 (2019).

50. “Ppb-level quartz-enhanced photoacoustic detection of carbon monoxide exploiting a surface grooved tuning fork” Analytical Chemistry 91, 5831 (2019).

51. “Ppb-level nitric oxide photoacoustic sensor based on a mid-IR quantum cascade laser operating at 52℃” Sensors and Actuators B: Chemical 290, 426 (2019).

52. “Cavity-enhanced photoacoustic sensor based on a whispering-gallery-mode diode laser” Atmospheric Measurement Techniques 12, 1905 (2019).

53. “Simultaneous multi-gas detection between 3 and 4 μmbased on a 2.5-m multipass cell and a tunable Fabry-Pérot filter detector” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 216, 154 (2019).

54. “Calculation model of dense spot pattern multipass cells based on a spherical mirror aberration” Optics Letters 44, 1108 (2019).

55. “Highly sensitive photoacoustic multicomponent gas sensor for SF6 decomposition online monitoring” Optics Express 27, A224 (2019).